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MODELING AND NONLINEAR CONTROL OF A
HOT-WATER-TO-AIR HEAT EXCHANGER

1. INTRODUCTION

1.1 Background

The control of Heating, Ventilation, and Air Conditioning
(HVAC) systems is difficult due to the nonlinear nature of the
components, the wide range of operating conditions under which they
must operate, and the many interactions between them. Accurate
models of these loops can be a great tool in evaluating the
performance of controllers and in particular control laws,
strategies, and tuning techniques. While many models already
exist, their accuracy under closed-loop control is very often
limited as compared to open loop accuracy due to the change in
variables during a closed-loop test.

One component in particular, the heat exchanger, is nonlinear
in nature. The general practice of using linear control on this
nonlinear component results in sluggish control. The goal of the
work presented here was to accurately model a hot-water-to-air heat
exchanger loop and to use this model to develop a nonlinear control
law with a minimum number of tuning parameters.

1.2 Previous Coil Models

Previous work, has been done at the University of Illinois on
modeling hot-water-to-air heat exchangers. Nesler modeled the
dynamic response of the heating coil as a nonlinear (coefficients
as a function of operating point) first-order differential equation
plus dead-time lag equation. The steady-state response was derived
from experimental tests performed about a fixed operating point
(inlet water temperature, inlet air temperature, and airflow rate
fixed). This resulted in an expression for the dynamics of the
discharge air temperature about a single operating point which was
dependent solely upon the water flow rate.

While Nesler's model provided insights to stability limits
about a single operating point, it lacked accuracy and the ability
to explore dynamics at other operating points. Rohrer refined
Nesler's model to achieve more accuracy by defining the effect of
the operating point and water flow rate on the time constant and

P.G. Ghassan, Design and Simulation of a Heating Coil, Master of Science Thesis
(University of Illinois, Urbana, 1985); C.G. Nesler, Direct Control of Discharge Air
Temperature Using a Proportional Integral Controller, Master of Science Thesis
(University of Illinois, Urbana, 1983); C.E. Rohrer, Digital Control of Discharge Air
Temperature Including Z-Transform Analysis, Master of Science Thesis (University of
Illinois, Urbana, 1985).
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dead-time of the coil. He also investigated an additional
operating point having an airflow rate 60 percent of that of the
original.

Ghassan developed an analytical model for a one-row, two-pass
cross flow hot water coil and compared it with experimental data.
The comparison consisted of open-loop upsets of water flow rate,
inlet water temperature, and air flow rate step changes. This work
provided additional information on the open-loop dynamic response
over a wider range of operating conditions, but did not explore
closed-loop response.

1.3 New Work

While the work by Nesler, Rohrer, and Ghassan provided
insights to the characteristics of hot water to air heat
exchangers, the model's accuracy under closed-loop control was not
thoroughly investigated. Nesler and Rohrer investigated some
aspects of closed-loop stability about two operating points, but
their work cannot be easily extended to other conditions. While
Ghassan's model is more general and applicable to a wider range of
operating conditions, his model's accuracy under closed-loop
control was never verified. Although some work was done by Rohrer
regarding sampling time and PI control, very little has been done
concerning the tuning process. This work addresses both closed-
loop accuracy and the tuning process. First a model accurate for
both open and closed-loop conditions was developed and then a
nonlinear control law with a single tuning parameter was developed.
This involved the following steps:,

1. Study the noise characteristics of the sensors used, and
where appropriate, filter the analog signal or install a new
sensor.

2. Develop software for data collection, analysis, and
simulations.

3. Produce an accurate model of the heat exchanger for both
open and closed-loop simulations for inlet air temperature changes,
air flow rate changes, inlet water temperature changes, and water
flow rate changes.

4. Develop a nonlinear control law with one tuning parameter.

12



2. EXPERIMENTAL HARDWARE AND SOFTWARE

2.1 Description of Experimental Setup

Figure 2.1 shows the experimental setup used for data
acquisition and control of the hot water temperature to air heat
exchanger. Water flow rate was controlled by computer through a
Metrabyte DAS-16 D/A board, EXP-16 multiplexer and filtering board,
a Honeywell RP7517B1016-1 E/P transducer, and a Honeywell model
V5011A two way valve with a pilot positioner. The heat exchanger
is a McQuay, four-row hot-water-to-air heat exchanger. The hot
water, supplied by a steam-to-hot-water heat exchanger, was
controlled independently of the rest of the test facility. The
combination of electric heaters in the inlet nir duct, a valve to
mix unheated city water with heated water, ii.- t air dampers, and
the control valve, all interfaced to the PIO-12 relay board,
allowed computer control of the four variables affecting the
process variable (outlet air temperature) . Table 2.1 lists the
major components of the test facility along with a short
description.

2.2 Airflow Rate Measurement

The airflow rate was initially measured with a Sierra model
432, hot-wire anemometer (HWA) placed at a point representative of
the average velocity. Initial measurements with the HWA
measurement were noisy and varied with air temperature, so the
circuit of Figure 2.2 was constructed to accommodate airflow rate
measurement with a venturi through the computer. A detail of the
HWA, venturi, and the associated ductwork is seen in Figure 2.3.
The empirical correlation between the HWA's output voltage and the
air velocity is given as Equation 2.1.

Vhwa = -0.1 + 1.32 Eh - 0.8534 Eh2 + 1.27049 Eh3  (2.1)

The analytical correlation for the venturi, obtained from
Bernoulli's Equation, after scaling to account for different duct
cross-sectional areas is given as Equation 2.2, where the air was
assumed to be an incompressible fluid and its density a function of
temperature.

13
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Table 2.1

Test Facility Equipment List

Component Description

Pump Bell and Gosset (1/3 hp), 1725 rpm
Fan 10" outside radius centrifugal
Duct 21" x 15" rectangular
hot Water Coil McQuay Model G, 21" x 15", 4 row
Control Valve Honeywell, Model V5011A1061 8432
Electric Heater 5 and 10 Kw
A/D board Metrabyte DAS-16, 12 bit, -5v to +5v

input
Computer IBM PS/2 Model 30
Venturi Pressure

Transducer Setra Model 432, 0 to 1"wc
E/P Transducer Honeywell, Model RP7517B1016-1
Hot Wire Anemometer Sierra, Model 432
Thermocouples Type T, copper-constantan
Venturi 10" to 8" diameter
Water Flow Meter Flow-Tech turbine Model FM-AC
Hot Water Valve MP 953E 1319 8536, normally open

Vvnt 0.072 [TaoE] ° 5  (2.2)

where

Vhwa = Air velocity (meters per second) at section 1 of
Figure 2.3 measured by hot wire anemometer

Vvnt = Air velocity (meters per second) at section 1 of
Figure 2.3 measured by venturi

Eh = Voltage (volts) measured from HWA

Ev = Voltage (volts) measured from venturi pressure

transducer

Tao = Air temperature ( R)

The HWA correlation was derived from the principle that the
convective heat transfer rate of a heated element exposed to a
moving airflow is dependent upon, among other things, that
airflow's velocity. A fixed amount of electrical energy is
supplied to an element exposed to the fluid whose velocity is to be
measured. The temperatures of this element and the temperature of
the unheated fluid are measured. For a correlation between the
temperature differential and fluid velocity to be accurate, the
other effects such as density, humidity, and fluid temperature on

15
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the convective heat transfer rate must be taken into account,
making the instrument's accuracy susceptible to changes in any of
these parameters. In order to assess the HWA's ability to
compensate for changes in some of these factors, airflow rate
measurements were recorded at 5-second intervals for both the HWA
and a venturi while air velocity, inlet air temperature, and inlet
water temperature were varied. The airflow rate was first stepped
up and then down at 2 and 10 min respectively as labeled in Figure
2.4 by "Dampers Close" and "Dampers Open." Next the inlet air
temperature was first stepped up and then down by turning electric
heaters in the air duct on and off at 18 and 27 min respectively

as labeled in Figure 2.4 by "15kW On" and "15kW Off." The inlet
water temperature was stepped down and then stepped up at 35 and 43
minutes respectively, as labeled by "CW Open" and "CW Closed,"
referring to the opening and closing of the city water valve
allowing unheated water into the water supplied to the hot water
coil as shown in Figure 2.1. Although it is reasonable to expect
the capacity of the fan to be partially dependent on air
temperature, the changes measured by the HWA during the inlet air
temperature upset at 18 and 27 min seemed excessive. The venturi
reading remains relatively stable as compared to the HWA reading.
Both instruments contain noise, but the venturi's noise level is
much smaller than that of the HWA. While the venturi measurement
does reflect a change in airflow when the inlet air temperature
changes at 18 and 27 min, the reading reaches a new value and
remains near that value. The HWA however, overshoots the new
value, eventually manages to compensate, and also reaches a new
value.

This variation in the airflow velocity measurement could be
from either turbulence in the airstream or electronic noise.
Either source of variation was undesirable. Although both the HWA
and venturi signals were filtered with a passive, low-pass RC
filter with a time constant of 0.8 s, a significant noise level
persisted for the HWA. At first, it was thought that moving the
sensor upstream of the coil would reduce the variation of airflow
measurement for changes in inlet water temperature and water flow
rate changes, so measurements were taken with the HWA upstream of
the coil, again at 5 s intervals. Figure 2.5 shows the HWA
measurement both upstream and downstream of the coil. Not only is
the magnitude changed significantly, but the signal to noise ratio
is smaller downstream of the coil. There are at least two possible
explanations. First, the coil may decrease the turbulence.
Second, it may act as a sort of buffer of temperature change in air
temperature. That is, the temperature of the air changes more
slowly downstream of the coil than it does upstream.

The most critical aspect of the air velocity measurement was
the dynamic changes. Since the noise of the HWA measurement was
much larger than that of the venturi, these tests prompted the use
of the venturi for all subsequent tests.

18
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2.3 Water Flow Rate Measurement

The water flow rate was measured with a Flow-Tech Model FM-AC
turbine flowmeter with a rating of 0.54 L/s to 1.13 L/s (1.5 gpm to
18 gpm). This signal, like the airflow rate measurement, had a
significant amount of high frequency noise and was filtered with a
passive, low-pass, RC filter with a time constant of 0.8 s.

2.4 Air and Water Temperature Measurement

The air temperature measurements were performed with type-T
thermocouple arrays wired in parallel, arranged in the duct as
shown in Figure 2.6. This signal, which was first processed by the
EXP-16 board, did not have a significant amount of noise.

2.5 Water Flow Rate Control

The water flow rate was controlled by computer through a 12
bit D/A converter (-5V to +5V analog range) and voltage to pressure
(E/P) transducer as shown in Figure 2.7.

21
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3. MODELS

3.1 Nomenclature

The following nomenclature was used in the development of the
models:

Cpa - Constant pressure specific heat of air

Cpw Constant pressure specific heat of water

CPC Constant pressure specific heat of coil

mcw = Mass of coil assumed at an average temperature
equal to outlet water temperature

mca= Mass of coil assumed at an average temperature
equal to outlet air temperature

Tai = Inlet air temperature

Tao = Discharge air temperature

Tw = Inlet water temperature

Two = Outlet water temperature

T = [Tw1 + Two]/2

ma = Air mass flow rate

mw = Water mass flow rate

Cw CpCmCw

Ca Cpcmca

UA = Overall heat transfer coefficient

CO = Control signal in terms of 12 bits (range 0 - 4095)

TP = Setpoint temperature of controller

KP = Proportional gain of controller
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3.2 Coil Model

3.2.1 Derivation

In this work, a coil model similar to the one Ghassan
developed was proposed. The main difference between Ghassan's
model and this model was the representation of the coil
capacitance. As seen in Figure 3.1, while Ghassan assumed that the
derivative of the average coil temperature was equal to that of the
outlet water temperature, here the capacitance was broken into two
terms as stated in assumptions 5 and 6 listed below. The remaining
assumptions were identical to Ghassan's.

The assumptions made for this model were:

1. The tube, water, and air have constant specific heats
throughout the tube length and over the ranges of temperature
encountered.

2. Densities are constant.

3. There is negligible heat conduction in the axial
direction.

4. The effective air temperature to be considered for
convective heat transfer purposes is the inlet air temperature at
any cross section.

5. The derivative of the temperature change of mca is equal to
that of the outlet air temperature.

6. The derivative of the temperature change of mcw is equal to
that of the outlet water temperature.

7. The mean temperature difference between the two fluids
driving the overall heat transfer UA is the difference of the inlet
air temperature and the average water temperature.

Energy balance equations were formed using the above
assumptions. The water side energy balance results in Equation 3.1
and the air side energy balance gives Equation 3.2.

mw(t)CPw[Twi(t) - T, 0(t)] + UA(t) [T8±(t) - Tw(t)] = Cwd[Two(t)]
dt

(3.1)

ma(t)Cpa[Tai(t) - Ta,(t)] + UA(t) (Tw(t) - Tai(t)] = Cad[Tao(t)]
dt

(3.2)
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Approximating the overall heat transfer as in Equation 3.3 and
using the forward rectangular rule for discrete approximation to
obtain a finite difference equation from Equations 3.1, 3.2, and
3.3, results in Equations 3.4 and 3.5.

UA(t) = a + brfi(t) + ddi(t) (3.3)

Two(k) = T.o(k-1) + Afiw (k-l) [Tw1 (k-1) - Two(k-1)]

+ [B + Cmw (k-1) + Dma (k-l)] [Ta(k-1) T (k-l)] (3.4)

Tao(k) = Tao(k-i) (3.5)

+ Efia(k-1) [Ta(k-1) - Tao(k-1)]

+ [F + Gm,(k-1)] + Hri 8 (k-l)] [Tw(k-l) - Tai(k-l)]

whe7.e

A = Cpw At/Cw E = Cpa At/Ca

B = a At/Cw F = a At/Ca

C = b At/Cw G = b At/Ca

D = d At/Cw H = d At/Ca

At = sampling interval

3.2.2 Open- and Closed-Loop Tests

The first test for model adequacy was an open loop-test.
Here, an open-loop test was defined as a test in which the input
variables Tw±, Tai, m, were ramped from an initial value to a second
value as quickly as the hardware allowed and water flow rate
remained constant. The ramping of the airflow rate and inlet air
temperature were quick as compared to the 5-second sampling
interval, while the ramp of the inlet water temperature was
somewhat slower. The measured values of inlet water temperature,
inlet air temperature, water flow rate, and airflow rate were then
used in computer simulations using the difference Equations 3.4 and
3.5 to predict Two and Tao. These predictions were then plotted
along with the measured Two and Tao in Figure 3.2. Here, the airflow
rate was first stepped up and then down at 2 and 10 min
respectively as labeled in Figure 3.2 by "Dampers Close" and
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"Dampers Open." Next the inlet air temperature was first stepped
up and then down by turning electric heaters in the air duct on and
off at 17 and 27 min respectively, as labeled in Figure 3.2 by
"15kW On" and "15kW Off." The inlet water temperature was stepped
down and then up at 35 and 43 min respectively, as labeled by "CW
Open" and "CW Closed," referring to the opening and closing of the
CW valve allowing unheated water into the water supplied to the hot
water coil (Figure 2.1). The coil model predicts the effects of
inlet water temperature, inlet air temperature, and airflow rate on
the outlet air temperature very well when only one variable changes
at a time.

The next step to test the coil model was a closed-loop test
similar to that of the open-loop test. However, during this test
proportional-only control was used to modulate the water flow rate
according to Equation 3.6.

CO(k) = KP[TP(k) - Tao(k)] + bias (3.6)

Additionally, a setpoint upset was introduced in addition to those
of the open-loop test. The setpoint was stepped from 40 0C to 45
0C (104 OF to 113 OF) at 52 min and back to 40 OC (113 OF) at 58 min
as labeled by "setpoint +5" and "setpoint - 5" in Figure 3.3. The
closed-loop data were predicted less accurately than the open-loop
test. The prediction of Tao for the open loop response shown in
Figure 3.2 had an average absolute error in predicting the outlet
air temperature of 0.16 °C (0.29 OF). The closed-loop test, shown
in Figure 3.3, had an average absolute error in predicting outlet
air temperature of 0.82 0C (1.48 OF) . These disappointing results
were observed for several other open- and closed-loop test data and
found to be repeatable.

3.2.3 Coefficient Revisions

Because of these deficiencies in closed-loop prediction of Taw,
several revised models were proposed and fit to data. The initial
revisions involved attempts to more accurately represent the model
coefficients. First the coil capacitance coefficients (C, and Ca)
were studied. Figure 3.1 seems to indicate that it would be
reasonable to expect that m , the portion of the coil at an average
temperature equal to the outlet water temperature, would be larger
for high water flow rates and lower for low water flow rates. In
other words, the dashed line in that figure would increase in
diameter as water flow rate increased. Similarly, as airflow rate
increased, the diameter of the dashed line would decrease the
second revision explored was the effect of the continuous to
discrete approximations. Use of the backward rectangular rule
approximation was compared with the forward rectangular rule. The
results indicated that the original model was more accurate than
the revised models.
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3.2.4 Revision of Model Form

Because the revisions to the original model mentioned in
section 3.2.3 failed to improve its accuracy, it was felt that some
basic characteristic of the coil was missing. This necessitated a
change in the approach, to improve the model. Wh'ile the previous
revisions of section 3.2.3 were attempts to more accurately
represent the coefficients of the model, the model form remained
the same. The absence of a basic characteristic may require a
different model form, with extra or different terms. Several
versions of a model using the effectiveness vs. Number of Transfer
Units (NTU) relationship were derived, but like previous revisions,
were found to be no better than the original model. The upset
which the original model of section 3.3 had the greatest difficulty
modeling (Figure 3.3), was an inlet air temperature change. The
model reacted much too slowly to the step change in the inlet air
temperature, Tai. When Tai changes quickly, the measured outlet
air temperature changes nearly instantly, and continues to change
gradually. Although the original model prediction, described by
Equations 3.4 and 3.5, changes gradually upon inlet air temperature
disturbances, it does not have the immediate initial response seen
in the experiments. This observation led to the addition of a term
to the original model on the premise that there existed a cross-
sectional area of the coil in which the passing air is not directly
affected by the forced convection heat transfer. This extra term
would therefore not be dependent upon the coil dynamics, but would
be a feed-forward term. The original model assumed the situation
depicted in Figure 3.4, which misses the true dynamics depicted in
Figure 3.5. While most of the air flowing past the coil
participates in the convection heat transfer (airstream 2), a small
percentage of it (airstream 1) does not get heated until after it
gets downstream of the coil and mixed with airstream 1. Assuming
that the two thermocouple arrays have the same dead-time and time
constant, the change sensed at the outlet thermocouple array due to
a change in inlet is equal to the change in inlet air temperature
delayed by the time required for the airstream to travel the duct
length. At the lowest velocity of 2.0 m/s (6.7 ft/s) encountered
on the test facility, the 0.3 m (I ft) of duct length from the
inlet to outlet thermocouple arrays is traveled in 0.15 s, small
compared to the 5-second sampling interval. An energy balance of
the unmixed and mixed airstreams, assuming the zero step delay,
yields Equation 3.7,

IaiCpa[Tj - Tail + ia2Cpa[T 2 - Tail = [dai. + Ia 2 ]CPa[Tao - Tail

(3.7)

and canceling Cpa and rearranging results in Equation 3.8:

Tao = [ial/ia]T1  + [Ila 2/fia]T 2  (3.8)

= RIT 1 + R2T2

31



00

0CO,

LH

0
E
-

0

41

4

C,44

o .. ,J

Uf) P4

*r4

0
0
0E

ca 0 0 0

32



0

00

I--

0

44
Ctll

0
$.4A

4J

bl

0

33.

44

E E E
(a*ra

W- tn

33.



Writing this in the finite difference form for Tao(k) and

Ta, (k-1) gives:

Tao(k) - Tao(k-1) = R,[T1 (k) - T1 (k-1 ) ] + R2 [T2 (k) - T2 (k-1)]

(3.9)
where

iai air mass flow rate associated with airstream i of
Figure 3.5 downstream of coil

T = temperature of air associated with airstream i of
Figure 3.5 downstream of coil

R, = al/i a

R 2  = ia2/ria

1 a  = al + ia2

Noting that Ta, of Equation 3.5 represents T2 of Equation 3.8 and

ia is ia2, Equation 3.5 can be rewritten as Equation 3.10.

T2 (k) = T2 (k-1) (3.10)

+ Eia2(k-1) [Tai(k-1) - T2 (k - 1)]

+ [F + Gi,(k-I ] + Hnia 2 (k-1)] [Tw(k-i) - Tai(k-1)]

Substituting Equation 3.10 into 3.9 and rearranging results in

Equation 3.11.

Tao(k) = Tao(k-1) (3.11)

+ E'ia(k-1) [Tai(k-1) - Tao(k-1)]

+ [F' + G'niw(k-1) I + H' %(k-1) ] [Tw(k-1) - Ta 1 (k-i) ]

+ I' [Tai(k) - Tai(k-1))

Substituting the correct air mass flow rate into 3.4 results in

Equation 3.12.

Two (k) = Two (k-i) + Ai w (k-i) (Tw1 (k-i) - Two (k-i) ]

+ [B + Cniw(k-1) + D'ia(k-1)] [Tai(k-1) - T(k-1)]

34



(3.12)

where

Tao = air temperature sensed at the averaging outlet

thermocouple array

D' = R2  G' = RG

E' = RE H' = RH

F' = RF I' = R2

and A, B, C, D, E, F, G, and H are as they were for Equations 3.4
and 3.5.

Equations 3.11 and 3.12 were used to simulate closed-loop
control, which was compared with the measured response. Inlet air
temperature, inlet water temperature, airflow rate, and water flow
rate as measured on the facility, were used in the simulation whose
results are shown in Figure 3.6. Here, the inlet air damper closed
at 2 min and opened at 5 min and the 15 kW heaters in the inlet air
duct were turned on at 10 min and off at 15 min. The added term
significantly improved the accuracy of the model for inlet air
temperature changes.

3.3 Valve Model

3.3.1 Valve Hysteresis Check

A test was run on the D/A converter, E/P transducer, valve,
and pilot positioner as a unit to check that the pilot positioner
(a device often installed on pneumatic actuators which uses
position feedback to match actuator stroke with the pneumatic
control signal) did in fact decrease hysteresis to a negligible
value. Figure 3.7 shows the signal received from the water flow
meter vs. the signal sent from the computer to the E/P transducer
through a 12-bit D/A convertor. The test began with a (control
signal) CO of 500, which was increased in increments of 10 until it
reached 1800, with a 5-second delay between each increment. CO was
then similarly decreased in increments of 10 until CO reached 500
again. The thin line represents the increasing control signal and
the thicker line represents a decreasing control signal. The
voltage measured from the flowmeter was nearly identical for both
the opening and closing stroke of the valve, indicating that
virtually no hysteresis existed.
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3.3.2 Polynomial Fit

The water flowmeter used has an analog needle output reading
in GPM, which was read for several steady state conditions and used
to correlate the voltage read from the water flowmeter (E) with
water volumetric flow rate, Q, (L/s) as in Equation 3.13.

Qw = 0.0082 + 0.00707Ew (3.13)

A third order polynomial, Equation 3.14, was fit to the data of
Figure 3.7 in the range CO 600 to 1400, corresponding to a water
volumetric flow rate range 0.341 L/s to 0.095 L/s (5.4 gpm to 1.5
gpm), to correlate CO and E,, measured in millivolts.

Ew = a. + a,[CO] + a2[CO] 2 + a3[C013 (3.14)

The accuracy of this polynomial fit, as shown in Figure 3.8, was
very good. Because the flowmeter was rated only down to 0.095 L/s
(1.5 gpm), measurements below that cannot be considered accurate.
Equations 3.13 and 3.14 were combined and the resulting mass flow
rate, as a function of control signal and assuming a constant
density, is given as Equation 3.15.

niw =R 3 + R4E (3.15)

where

EW = Voltage (millivolts) read from water flowmeter

Qw= Water volumetric flow rate (L/s)

mw= Water mass flow rate (kg/s)

ao = -41.29

a, = 0.30932

a 2 = -3.2681 x 10- '

a3 = 9.56 x 10-8

R3 = 0.008 kg/s

R4 = 0.00703 kg/s/mv
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3.3.3 Step Response

Figure 3.9 shows the time response of the measured water flow
rate, sampled once a second, to two control signal (CO) step
signals in opposite directions. At 10 s, CO is stepped up from 650
to 1250, and at 20 s CO is down from 1250 to 650. Since the
previous simulations using 5-second sampling intervals showed good
prediction of outlet air temperature, and the step response of
water flow rate showed a time constant of less than 5 s, the valve
response can be reasonably approximated as a pure time delay of one
time step for analysis and simulation purposes.

3.3.4 Control Signal and Water Flow Rate Correlation

The measured and predicted water flow rate using Equation 3.14
and a one-step delay is shown in Figure 3.10. Here closed-loop
control with step airflow rate changes and inlet air temperature
were recorded at 5-second intervals with step disturbances in inlet
airflow rate and inlet air temperature.

Q,(k) = 0.008 + 0.0071Ew[CO(k-1)] 600 CO(k-1) 1440

(3.16)

3.4 Complete Loop Model: Controller, Valve, Coil; Closed-Loop
Simulation

A discrete control equation was combined with Equations 3.10,
3.11 and 3.15 to obtain a computer generated simulation of the
entire closed-loop system. Figure 3.11 shows the entire loop in
block diagram form. The proportional-only control law which
resides in the digital computer, was chosen for its simplicity.
The proportional-only control law in the positional form was given
in Equation 3.6. While Equation 3.6 cannot be implemented exactly
because of computation time, it is very closely approximated with
a personal computer since the sampling interval was 5 s and the
time required for sampling data and computing the control equation
was less than 0.005 s. Proportional-only control was performed on
the facility and data recorded for proportional values of 100, 205,
and 410 CO/0C. The tests lasted 32 min, 32 min, and 15 min
respectively, and contained step disturbances of airflow rate,
inlet air temperature, and inlet water temperature. The setpoint
for all tests was 50 C (122 'F) . The measured and predicted outlet
air temperatures are shown in Figures 3.12 through 3.14. The
dynamics of the proportionally only closed-loop control were
predicted very well. These plots of actual and predicted outlet
air temperature reveal at least two significant details. First,
the response of the coil, valve, and E/P transducer were all
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predicted very well. This is true of not only closed-loop dynamic
response, but also the steady-state values. Secondly, the final
value of the process variable (Tao) is significantly different from
its setpoint, a result of proportional-only control. As the
proportional value is increased, the magnitude of this steady-state
offset decreases; however the system becomes less stable. This
presents a tradeoff in the tuning process. Tighter control is
obtained at the expense of stability. Furthermore, the nonlinear
system requires that tuning be performed at the point of highest
system gain (ratio of change in discharge air temperature to change
in control signal) to ensure stability over the complete range of
operating conditions, resulting in sluggish control for the
majority of the time. Thus, the motivation for developing a
nonlinear control law can obtain superior dynamic response without
sacrificing stability. This was done by first linearizing the
system about several operating points, observing simulated dynamic
response to a linear feedback control, and finally using those
results in developing a nonlinear control law.
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4. A LINEARIZED SYSTEM

4.1 Linearization of the Coil Model

Although nearly all systems are in reality nonlinear, as are
heating coils, very often systems are analyzed linearly to
facilitate analysis and design. Once preliminary design and/or
analysis has been completed, the adequacy of the linearized model
must be evaluated.

The partial derivative of Equations 3.11 and 3.12, with
respect to the other variables, linearizes the model about an
equilibrium point, resulting in Equations 4.1 and 4.2.

Let 8X = X - X

X = Variable X at equilibrium point about which to
linearize

X = Variable X at arbitrary point

STo(k) = F118Two(k-1) + G11 8Ta(k-1) + G128Tw (k-1) + G136fia(k-1)

+ G14 irw (k-1) (4.1)

8Tao(k+l) = F2l8Two(k) + F228Tao(k) + G218Tai(k) + G228Twi(k)

+ G238ma(k) + G245m,(k) (4.2)

where

F11  8 (To (k+1))/5 (To (k))

I -Am, - 0.5[B + C + Di,]

F 12  = 8(Two (k+1))/8 (Tao (k))

= 0

F2 1  = (Tao (k+1))/8 (Two (k))

0.5[F + Gm, + Hm]

F22  = 8(Tao (k+) )/8 (Two (k))

1 -Ei a

48



Gil = 8 (Two (k+1) )/ (Tai (k))

= B + Ck + Dfia

G12 = 8(Two(k+l))/ (Twi(k))

= Ai w - 0 .5[B + Cm, + Dri a]

= D[Tai - 0.5[Tai + Two]]1

G14 = 8 (Two (k +l))/ (iWk)

= A[Twi - Two] + C[Tai - Tw]

G21  = 8 (Tao (k+l))/8 (Tai (k))

= Eni a - F - Gi - Hria

G22 = 8 (Tao (k+1))/8 (Twi (k))

= 0.5[F +Gi w +Hial

G23  = 8 (Tao (k+l))/8 (fia (k))

= E[Tai - Ta] +H[0.5[Tai + Two] - Tail]

G24  = 8 (Tao (k +))/8 (iw (k))

= G[0.5[TwI + Two] - Tai]

All variables are evaluated at the equilibrium point.

Assuming the external disturbances to be zero (inlet air
temperature, inlet water temperature and airflow rate constant at
the equilibrium value), the dynamic response of the discharge air
temperature can be calculated as Equation 4.3. Using z-' as the
one-step delay in the z domain, Equation 4.3 becomes the transfer
function of Equation 4.4.

8Tao(k+l) = F228Ta(k) + [G24 + G25G,4]811(k+I)

+ G25F11 8Two(k) (4.3)

8(Tao)/8(mw) = F 21G14  + G24 [z - Fll)

[z - Fil [z - F22] (4.4)
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4.2 Linearized Valve

Linearization of Equation 3.14 gives Equation 4.5.

Ew = [a, + 2a 2CO + 3a3CO
2 ] 8C0

= w8CO (4.5)

Equation 3.15 yields Equation 4.6 and combining this with Equation

4.5 yields Equation 4.7

8iw (k) = R4 8Ew (4.6)

&fiw/8CO = R4E w =K (4.7)

4.3 Root Locus

The linearized coil transfer function (Equation 4.4) was
combined with the linearized valve transfer function to completely
describe the open loop transfer function. This linearized system
was next analyzed using the root locus. Since Equations 3.10 and
3.11 contain six variables, the four constant (at equilibrium)
inputs can be selected arbitrarily, and then the output variables
(Two and Tao) solved for as in Equations 4.8 and 4.9.

Two [B + Cri + Din] [Ta± - 0.5Tw] + AiwTw

AMw + 0.5[B + Crfiw + Ddi] (4.8)

Y= T01 + [[F/Em,] + [Gmw/[Ema]] [[Tw + Two/2] - T±] I

+ [H/E] [[[Twi + Two]/2] - Tw1j (4.9)

The equilibrium value for the external disturbance variables
(not controlled) were chosen as inlet air temperature of 30 OC (86
F), inlet water temperature of 74 C (165 F), and airflow rate of
0.78 kg/s (1.72 lbm/s) . The fourth input variable, controlled
water flow rate, was varied from 0.063 L/s to 0.32 L/s (1.0 gpm to
5.0 gpm). Equations 4.8 and 4.9 were then used to calculate the
corresponding equilibrium values of outlet water temperature and
outlet air temperature at each water flow rate. Next, the transfer
function parameters F21, G14, G24, F11, and F22 were computed for each
water flow rate. The coil-open loop transfer function was then
computed from Equation 4.4 for each water flow rate. Program
"FGFRR3.PAS" automated the procedure. Program descriptions are
included in Appendix A; source code is in Appendix B. Root locus
plots were then made for the five resulting transfer functions
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using a constant valve gain of 0.000442 kg/s/SCO, and are shown in
Figures 4.1 through 4.5.

4.4 Design Criteria

As expected, the root locus revealed that as water flow rate
increases, the proportional gain allowable for stable operation
also increases. The desired result is a control law which varies
the proportional gain (Kp) with water flow rate. One good design
for HVAC control might be a critically damped system, since the
primary objective is simply to get to a set point within a
reasonable time period without excessive control action. In terms
of root locus, this would be equivalent to the point at which the
roots break from the real axis. However, the relative positions of
the poles and zeros of the linearized model prevent this strategy
from being practical. As Figure 4.3 shows, at certain combinations
of the variables, two poles lie at the same position so that the
root locus breaks away from the real axis immediately.

Alternatively, a less stringent dynamic response
characteristic had to be chosen. The most common dynamic response
characteristics specified in a design are percent overshoot (%OS),
settling time, and rise time. For a second order system, these can
be expressed as simple algebraic expressions dependent upon roots
of the characteristic equation. Percent overshoot, for example,
can be expressed as a function of damping ratio.2

%OS = 100(1 - DR[0.06]] (4.10)

where

DR = Damping ratio

%OS = 100[Max value - Final value]/
[Final value - Initial value]

In terms of the root locus, Equation 4.10 represents a logarithmic
spiral as outlined in Figures 4.1 through 4.5. With this choice,
instead of being concerned with eliminating small oscillations
entirely, which are acceptable, small overshoots are permitted and
the final value is reached more quickly. This corresponds to
finding the value of Kp which results in the root locations
intersecting the logarithmic spiral, marked in Figure 4.2 by two
squares.

2G.F. Franklin and J.D. Powell, Digital Control of Dynamic Systems (Addison-Wesley, 1980).
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5. PROPORTIONAL-ONLY NONLINEAR CONTROL

5.1 Nomenclature

The following nomenclature is used in the discussion of the
development and implementation of a nonlinear control law for the
hot water coil:

SPb The value of the setpoint (Tsp) at which steady
state is obtained before an experimental test or
simulation begins

8SP The amount by which TP is increased or decreased
during an experimental test or simulation

Kpn = Proportional gain of a nonlinear control law

KP1  = Proportional gain of a linear control law

error = - Tao

5.2 Calculation of KP Vs. Water Flow Rate for 25 percent Overshoot

As mentioned in Chapter 4, percent overshoot (%OS) can be
calculated as a function of the closed-loop poles for a second
order system. Under certain conditions, %OS can be estimated for
higher-order systems via less simple algebraic equations.3 For the
general case however, simulations can be more easily iterated for
the desired result. Two sets of programs, one of which used the
linearized coil model while the second used the nonlinear model,
were written to simulate the closed-loop step response of the coil
using proportional-only control.

The first set of programs used the linearized coil transfer
function of Equation 4.4. A flow chart giving the sequence of
calculations and program flow is given in Appendix A as Figure A.1.
First a compiled PASCAL program, "CLTF.EXE", computed the closed-
loop transfer function. Given the value of the three variables of
Table 5.1 along with the control variable, water flow rate,
Equations 4.8 and 4.9 were used to calculate the value of the two
remaining variables T,, and Tao. Substitution of the results into
Equation 4.4 then gave the coil transfer function. "CLTF.EXE"
then calculated the closed-loop transfer function parameters for a
proportional-only controller, and saved it in a format readable by
the commercially available software package, Matlab. The Matlab
program "DSTEST.M" then computed the closed-loop step response to
a unit step input, automatically calculated %OS, and iterated the

3B.C. Kuo, Automatic Control Systems, 4th ed. (Prentice Hall, 1982).
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Table 5.1

Four Steady-State Conditions Used for Calculation of
Nonlinear Control Law

Case Tai (oC) Tw± ("C) m (kg/s)

Base 30 74 0.85

1 47 74 0.85

2 30 74 0.49

3 30 45 0.85

proportional gain until a %OS of 25 was found. Simulations were
run for water flow rates ranging from 0.03 L/s to 0.32 L/s (0.5 gpm
to 5.0 gpm) for four different cases, as listed in Table 5.1.

A second simulation program, "PSSPSELF.PAS", used the
nonlinear coil model and the proportional-only control law of
Equation 3.6. "PSSPSELF.PAS" performed setpoint disturbance
simulations (equivalent to a step input to the transfer function of
a linear system) to verify the results of the linear analysis.
Simulations for conditions identical to the transfer function
simulations performed using "DSTEST.M" were run, and the results
verified that the linearized coil model adequately describes the
behavior of the nonlinear coil for small setpoint disturbances, as
seen in Table 5.2. The discharge air temperature of one such
simulation calculated by "PSSPSELF.PAS", the base case at 0.063 L/s
(1.0 gpm), is shown in Figure 5.1. Here SPb = 38.73 OC (101.71
OF) and 8SP = 0.59 0C (1.06 OF) . This small setpoint disturbance was
necessary to obtain nearly equal %OS for both an increase and a
decrease in setpoint. Table 5.2 lists the water flow rate, SPb,
and Kp resulting in a 25 %OS calculated by both "PSSPSELF.PAS" and
"DSTEST.M". Since the transfer function is by definition linear,
a step response has the same %OS for a step disturbance regardless
of its magnitude or sign. However, the nonlinear simulation
performed step setpoint upsets in both directions since %OS is
dependent upon both the sign and magnitude of the step input.
Because of this, an average is given for the %OS value calculated
by"PSSPSELF.PAS". SPb of Table 5.2 represents the setpoint required
for a proportional-only controller to achieve steady state.control
with the values of proportional gain and water flow rate listed in
the table. It is important to note here that a linearized gain of
0.000442 kg/s/5CO (calculated at 0.19 L/s [3 gpm], from Equation
4.5) was used for the valve in both simulation programs. Figure
5.2 shows the relation of the combined controller, transducer, and
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Table 5.2

Proportional Gain for 25 %OS for the Base Case

Nonlinear Coil Linearized Coil

QKc SPb %OS %OS
(L/s) CON) (OC) (avg) (COC)

0.032 125 28.0 24.8 105 24.9

0.064 260 38.2 24.4 283 25.2

0.095 340 42.1 24.3 367 25.0

0.126 350 44.1 24.5 369 24.5

0.158 350 45.8 24.7 369 25.2

0.189 350 47.2 24.0 367 25.4

0.221 340 48.5 25.3 364 25.5

0.252 340 49.8 25.5 360 25.3

0.316 330 50.9 23.3 355 25.0

valve gain (KpKv) as a function of water flow rate for each case of
Table 5.1 which allows for a 25 percent overshoot. These curves,
obtained from the IDSTEST.M"I simulation, represent the nonlinear
coil gain and water flow rate relationship from which a nonlinear
control law was developed. The shape of these curves was as
expected. As water flow rate decreases, the magnitude of its
effect on discharge air temperature increases. This can be plainly
seen by computing the steady-state gain of Equation 4.4, the
linearized coil transfer function according to the final value
theorem, assuming that for all poles of [1-z]P(z), the system lies
within the unit circle.

Gcoi= lim (z-1) z P(z) (5.1)

z-Al (z-1)

where z/(z-1) = the unit step function

P(z) = the coil transfer function

Gcoi = steady state gain of the coil
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The steady-state coil gain was computed for the four cases of Table
5.1 and water flow rates from 0.0 L/s to 0.347 L/s (0.0 to 5.5
gpm) . The results, plotted in Figure 5.3, are consistent with
Figure 5.2. As water flow rate decreases, coil gain increases, and
the proportional gain produces 25 percent overshoot.

5.3 Proportional Gain as a Function of Water Flow Rate

The goal of this work was to obtain a control law such that
the controller would not have to be tuned at one particular
operating point, specifically at the least stable point, in order
to assure stability for the system's entire range, and thus
sacrifice controller performance. That is the problem inherent in
a fixed, linear control strategy.

The curves of Figure 5.2 can be described by an equation
having the form:

KpKv = aj(iw/max)bl (5.2)

where

max - The maximum water flow rate

a, = Proportional constant CO/0 C

b. = Dimensionless parameter

This form of curve fit was chosen because of its relatively simple
form and its ability to take the shape required to fit the data.
The water flow rate here is divided by the maximum possible
(corresponding to a fully open valve) so that the constant b, would
not be dependent upon the units used for water flow rate. The
curves of Figure 5.2 are very similar in their shape. In order to
use one of these relationships for a control law that provides for
25 percent overshoot or less for any of the four cases, the curve
corresponding to the lowest Kp must be used. Therefore, the curve
of Figure 5.2 corresponding to the base case of Table 5.1 was fit
to the curve described by Equation 5.2. The predictions by Equation
5.3 were plotted in Figure 5.4 along with the values in Table 5.2.

KpKv = 0.1901(ni,,(k-l)/mwmax)°'0) .96 (5.3)
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The relationship of Equation 5.3, was combined with the positional
form of proportional-only control (Equation 3.6) and a valve gain
of 0.000442 kg/s/CO, to yield Equation 5.4.

b,

CO(k) = a1(i(k-l)/0.35) [TP(k) - Tao(k)] + bias (5.4)

where

iw = Water mass flow rate (kg/s)

bias Control signal for zero error

a, = 430 CO/0C

b, = 0.3796

Since the performance analysis of a controller is always
somewhat qualitative by nature, it is natural to assess the
performance of a control law by comparing it to an already accepted
control law. Thus, the nonlinear proportional-only controller was
compared with a linear proportional-only controller.

For the hot water coil of this study, low water flow rates
correspond to the highest system gains, and are therefore the least
stable. A linear controller would therefore require tuning at an
operating point corresponding to the lowest water flow rate for
which the tuning technique does not satucate (completely close) the
valve. For the system considered here, a water flow rate of 0.032
L/s (0.5 gpm) is reasonable for this system. The curves of Figure
5.2, which assume a fixed valve gain of 0.000442 kg/s/8CO, indicate
that for a 25 percent overshoot at an operating point corresponding
to the base case of Table 5.1 with a water mass flow rate of 0.3
kg/s (0.14 lbm/s), a KP value of 104 CO/0C would be required. A
fixed linear controller would have to be left at this value for all
operating conditions in order to assure stability. The relatively
small gain would result in a larger steady state offset and
sluggish response at operating points requiring higher water flow
rates. A nonlinear controller, developed from the relationship of
Figure 5.2, however, could vary the controller gain base upon the
control signal and valve characteristics to compensate for the
nonlinear coil.

Several simulations of closed-loop performance were conducted
for both a fixed linear controller and a nonlinear controller using
Equations 3.6 and 5.4. The simulation sets a base setpoint (SPb)
and waits 75 s for steady state. The setpoint is decreased by 8SP
at 75 s, and at time 450 s, the setpoint returned to its original
value. Figure 5.5 is a plot of the simulated discharge air
temperature for both a linear (K., = 104 CO/0 C) and a nonlinear
controller. The operating conditions for the test were those of
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the base case of Table 5.1, Spb = 45 'C (113 OF), 8SP = 5 0C (9 OF),
KP, 104 CO/0C, and bias of 1207. This is not at all the desired
result. The nonlinear control not only oscillates, but it also has
a larger offset. The problem lies in the feedback of the varying
proportional gain. When the setpoint was decreased to 40 0C (104
OF), this resulted in a steady state water flow rate of 0.05 L/s
(0.84 gpm) for the linear control. The water flow rate of the
nonlinear control however, oscillated between 0.0 L/s (0.0 gpm) and
0.17 L/s (2.7 gpm) as shown in Figure 5.6. When conditions change
such that the valve must be closed or nearly closed, KP approaches
zero, resulting in the control signal value approaching the bias
value. Since the bias value was set corresponding to a water flow
rate in the middle of the flow range for zero error, the water flow
rate cycled between zero and this midrange value. Two possible
solutions to this were explored. One possible solution would be to
change the bias value. A second possibility would be to restrict
KP to a certain range. A third possibility would be to filter the
feedback variable that adjusts the proportional gain (water flow
rate) . The first two possibilities were considered the only viable
alternatives since the third would involve adding additional
constants to be chosen.

Altering the bias value may work for specific operating
conditions, but is unlikely to work under varying conditions.
Setting the bias such that the valve closes at KP = 0 would provide
for a zero water flow rate when KP is zero, which is consistent
with the correlation of Equation 5.2. However, this is not
desirable. This would imply an infinite coil gain at zero water
flow, which is not the case as evidenced by Figure 5.2. Although
coil gain is certainly larger at lower water flow rates than at
higher water flow rates, it does not go to infinity. Figure 5.7
shows the effect of setting the bias to close the valve at zero
error. Here SPb = 45 0C (113 OF), 8SP = 5 0C (9 OF), bias = 1591,
and the conditions of the base case in Table 5.1 exist. Notice too
that this results in a final value below the setpoint. The
remaining simulations use a bias value of 1207.

Therefore, Equation 5.1 is not quite the right form. To fit
an equation of a more correct form, proportional gains for 25
percent overshoot of operating conditions with a water flow rate
below 0.032 L/s (0.5 gpm) would be required. This could be done
using simulations, but might prove to be difficult if it were
required for tuning an actual system. Additionally, this would
ultimately require that another controller constant be found, since
a curve fit to a more complicated form would involve additional
parameters. One alternative would be to assume KP constant for
water flow rates below some value. For the system used here, since
it was assumed that a linear controller would have to be tuned at
0.032 L/s 0.5 gpm, the curve fit of Figure 5.4 was assumed to be
flat below water flow rates of 0.032 L/s (0.5 gpm). Figure 5.8
shows the result of using the nonlinear control law of Equation 5.4
with an added condition that KP 105 CO/ 0 C. Here SPb = 45 0C, 8SP
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= 5 'C (9 OF), and base conditions of Table 5.1 exist. The
nonlinear control decreased the steady state offset as compared to
the linear control, but a small oscillation persists for the
decrease in setpoint.

Since Equation 5.1 has two parameters, it allows a simple
manipulation of the parameters a, and b, to make the curve fit pass
through points on the low and high end. Changing the value of a,
shifts the entire curve up and down the y axis, and changing b,
alters the Kp value at higher water flow rates. Since setpoint
decreases result in lower water flow rates, this means that a,
could be tuned for setpoint decreases. Conversely, b, could be
tuned for setpoint increases. The value of 104 CO/0C for KP at a
water flow rate of 0.03 L/s (0.5 gpm) was used to solve for al to
be 262 CO/°C, assuming b, to remain at 0.3796. This value for a,
successfully eliminated oscillation for this simulation as shown in
Figure 5.9, which is the same simulation as Figure 5.8 with the new
value of a,. Thus the nonlinear control law, with K, = 0.000442
kg/s/CO, was found to be:

KP = 262(mw/niax) 0.3796 (5.4)

Equation 5.4 was used in several simulations for the base case.
Small disturbances, 8SP = 5 OC (9 OF) were used because large
disturbances tended to completely open or close the valve,
regardless of the control law. Figure 5.10 shows a simulation
result for the base case with SPb 55 OC (131 OF) and 8SP of 5 OC (9
OF) . Again, the base conditions of Table 5.1 apply. This
controller does provide tighter control than possible with a fixed
controller. Although a fixed controller could be tuned with a
greater KP, it would be unstable at lower water flow rates. For
instance, if a fixed controller were tuned to give the response of
the nonlinear controller in Figure 5.8, its response would be very
nearly the same as the nonlinear controllers near those operating
conditions. The linear controller response at a lower setpoint
however, corresponding to a lower flow rate, would be unstable as
evidenced by the simulation result shown in Figure 5.11.

5.4 Proportional Gain as a Function of Setpoint and Inlet Air
Temperature

Since the nonlinear control law of section 5.2 did not have a
greatly improved control, a second form of nonlinear control was
sought. One variable which affects the process variable and is
always known is the setpoint. This can be used in a feed-forward
manner to compensate for setpoint disturbances. In many instances,
the inlet air temperature to a coil is also known. Most air
handlers in HVAC systems control the temperature supplied to a coil
by mixing outside intake and return air. If control of a heating
coil and this mixed air were performed by the same multi-loop
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controller, as in a direct digital control (DDC) panel, the
measured mixed air temperature could be used in this control law.

The difference between setpoint and inlet air temperature is
a strong indicator of the load required of the heating coil. The
form of Equation 5.1, with the difference of setpoint and inlet air
temperature as the independent variable makes sense as a control
law. As the setpoint approaches the inlet air temperature, the
water flow rate should also approach zero.

The design criteria, or the acceptable response, was chosen as
one which results in a slight decaying oscillation for both the
high and low system gain conditions. Two setpoints corresponding
to a nearly open and nearly closed valve for the base conditions of
Table 5.1 were chosen to develop a control law. Simulations were
run with the setpoint varying between these setpoints, using a
fixed linear controller with a bias of 1207, which corresponds to
a water flow rate at half of the full range, and KP iterated until
a slight oscillation of Tao was observed. An increase of setpoint
from 32 0C to 52 0C (90 OF to 126 OF) resulted in a slight
oscillation when a value of 690 CO/0C was used as shown in Figure
5.12. This value will hereafter be referred to as Kphigh. The
decrease in setpoint from 52 OC to 32 0C resulted in a slight
oscillation when a value for KP of 310 CO/0C was used as shown in
Figure 5.13. This value will hereafter be referred to as KP10o. The
values of Ts0, Ta, and Kp were then used to fit Equation 5.5.

d,

KP = c1 (TsP - Tai) (5.5)

where

c1 = 246

d, = 0.3337

Figure 5.14 shows the resulting control gain. By fitting a
multiplicative curve through these two points, superior control by
a nonlinear controller using this as a gain equation is assured.
This is also very appealing for implementation concerns, as it
would simply require observing system response at two setpoints.

Figure 5.15 shows the results of a simulation using the
nonlinear control law of Equation 5.5 and the linear control law of
Equation 3.6 with KP1 = 690 CO/°C. The base conditions of Table 5.1
were used. The linear controller matches the performance of the
nonlinear for the setpoint increase, but it is oscillatory at the
lower setpoint. The simulation was run again but this time with KP1
= 310 CO/C and the resulting Tao plotted in Figure 5.16. The
linear controller nearly matches the nonlinear controller at the
lower setpoint in terms of both steady state error and dynamic
response, but it cannot provide the steady state accuracy of the
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a nonlinear controller using this as a gain equation is assured.
This is also very appealing for implementation concerns, as it
would simply require observing system response at two setpoints.

Figure 5.15 shows the results of a simulation using the
nonlinear control law of Equation 5.5 and the linear control law of
Equation 3.6 with KpA = 690 CO/PC. The base conditions of Table 5.1
were used. The linear controller matches the performance of the
nonlinear for the setpoint increase, but it is oscillatory at the
lower setpoint. The simulation was run again but this time with KP1
= 310 CO/aC and the resulting Tao plotted in Figure 5.16. The
linear controller nearly matches the nonlinear controller at the
lower setpoint in terms of both steady state error and dynamic
response, but it cannot provide the steady state accuracy of the
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nonlinear controller at higher setpoints. The operating conditions
in between were also simulated and the nonlinear controller
performed well here also (Figures 5.17 and 5.18).

5.5 Implementation of the Setpoint-Dependent Proportional-Gain
Nonlinear Controller on the Test Facility

The simulations showed that the nonlinear controller can
outperform the linear controller only slightly. The simulations
however, did not take into account the effects of a nonlinear
valve. The nonlinear effects of the valve were expected to enhance
the performance advantage of a nonlinear control law.

Implementation of the nonlinear controller involves selecting
the constants for a system for which the gain characteristics are
not known. Thus, Equation 5.5 was tuned on the test facility as if
no knowledge of its dynamics were available. One very common
method for tuning linear proportional controllers is a trial-and-
error approach very similar to those employed in determining the
constants of Equation 5.5 in the simulations. The general idea
then is to find an acceptable gain for two operating points and to
derive a nonlinear gain equation from those gains and some third
variable that changes and is always known (the setpoint).

The design criteria, or the acceptable response, was chosen to
be one that results in a slight decaying oscillation for both the
high and low system gain conditions. The first step for tuning the
control Equation 5.5 was to determine the maximum and minimum
possible values for the discharge air temperature. Figure 5.19
shows a step in CO from a fully closed to fully open valve. The
maximum obtainable temperature is 55 *C (131 'F) 'and the minimum 32
0C (90 'F) . Although the upper value seems quite reasonable, the
minimum value should theoretically be equal to the inlet air
temperature which was 26 *C. The reality is that the valve never
completely shuts off the flow unless the pump is turned off. The
next step was to conduct closed-loop step setpoint response tests.
Since the maximum and minimum values for T.0 are 55 0C and 32 0C, a
guess that setpoints of 50 0C and 35 0C would nearly fully open and
close the valve were used in conducting tests. A test which did
not exercise the valve through its full range was conducted first
in order to obtain a first guess for Kphigh and kplow. (Figure 20)

The next test performed, whose discharge air temperature is
plotted in Figure 5.21, used SPb = 40 0C, 8SP = 10 0C, and Kp, = 600
CO/0C. Here continued oscillation provided the information that
Kphigh 600 and KpI.W < 600 CO/C. Next, Kp was decreased to 500 CO/0C
and the response of Figure 5.22 observed. This meant that Kphigh
500 CO/'C depending upon the allowable amount of oscillation.
Since the loop would likely require additional fine tuning, this
was assumed to be the desired value for the time being. Figure
5.23 shows the observed result of decreasing Kp to 350 CO/0C and
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observing the step response with SPb = 45 0C and 8SP = 5 0C. Thus,
Kp1ow was assumed to be 300 CO/°C.

Using the values obtained from the tuning tests (Kphigh = 500
CO/0 C, KP1ow = 300 CO/0C, the control law of Equation 5.6 was
obtained by solving for a, and b, using the value of Taj (26 0C),
which was measured during the tests.

KP = 95.3[Tsp - Tai]0.5208 CO/°C (5.6)

The results of implementing Equation 5.6 in the positional control
law of Equation 3.6 is shown in Figure 5.24. Here, SPb = 35 0C (95
OF), 8SP = 5 0C (9 OF) . The response is oscillatory at both high
and low setpoints, suggesting that the multiplicative constant,
95.3 is too high. For the inlet air temperature present during
this test, Equation 5.6 gave a gain of 530 CO/0C, higher than the
maximum found in the earlier tests. A value of 475 CO/°C was
assumed for Kp and the control law of Equation 5.7 was calculated
assuming the power constant, 0.5208.

KP = 85[Tsp - Tai]0 .5 20 8  (5.6)

The disturbance with SPb = 35 oC, 5SP = 15 oC was again performed
using Equation 5.6 An acceptable response was observed, so a
linear controller was used for the same test for comparison. A
proportional gain corresponding to a stable value at high setpoints
(low water flow rates) was used, Kpl = 310 CO/oC. The results
plotted in Figure 5.25 were very similar.

It is possible that this system simply does not have enough
nonlinearities to take advantage of the nonlinear control law.
Although it was shown that the coil studied had extremely nonlinear
steady state gain between 0.0 L/s and 0.06 L/s in which the full
flow rate is 0.34 L/s, beyond 0.06 L/s, the coil gain was linear.
Because of this, the nonlinear control law could only outperform
the linear control law if setpoints corresponding to this very
narrow range of operation were used. Setpoints corresponding to
that operating range physically made no sense. Because the
proportional-only controller always has an offset, the temperature
achieved, depending on the bias value used, is always either
greater than or less than the setpoint. The usual practice is to
pick the bias value such that when the error is zero, the bias
drives the actuator to provide a flow rate in the midrange of the
valve. In that case, for setpoints near that of the inlet air
temperature, the resulting discharge air temperature is greater
than the setpoint. The result is that, in order to achieve water
flow rates in the range that result in highly nonlinear coil gain,
setpoints below that of the inlet air temperature were required.
Figure 5.26 shows the resulting measured discharge air temperature
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of two separate tests, the first of which used the linear control
law with Kpl = 310 CO/"C and the second, which used Equation 5.6.
Here the setpoint was decreased from 35 0C to 29 0C in both tests.
As the simulations predicted, the nonlinear controller provided
stable control while the linear controller oscillated. Although
this represents an artificially low setpoint, the same results
could be expected for other conditions with realistic setpoints
requiring low water flow rates such as lower airflow rates, higher
inlet water temperatures, and higher inlet air temperatures.
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6. SUMMARY AND CONCLUSIONS

Much of the preliminary work performed for this study
concerned the data acquisition hardware and software.
Thermocouples for temperature measurement performed very well. Hot
wire anemometers for airflow rate measurement should be avoided if
possible. The software developed for data acquisition and analysis
would greatly simplify the task of any future work performed on the
test facility or on the models created.

The goals of this work were to develop an accurate dynamic
model for analysis of closed-loop control. A model was developed
to be accurate over a wide range of conditions, including a closed-
loop test with several simultaneously changing variables. The
major difference between this model and previous models is its
verified accuracy under closed-loop conditions. One reason for
this is a feed-forward term involving the inlet air temperature.

Two nonlinear proportional-only control laws were developed
and experimentally verified to work slightly better than a
proportional-only controller. The first nonlinear control law,
which used water flow rate to vary the proportional gain, was
unstable for many operating conditions. This was solved by
preventing the proportional gain from assuming values below that at
which a linear controller would have been tuned. The difference
between this resulting controller and the fixed linear controller
were still not impressive. Experimental validation of this
controller's performance was not performed.

A second nonlinear controller was designed so that the
proportional gain was a function of the setpoint and inlet air
temperature. This controller was also better than the fixed linear
controller, but the difference was not impressive. This controller
was implemented on the test facility and compared to a fixed linear
proportional-only controller. The experimental results were found
to give very similar results to the simulations.
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APPENDIX A. SOFTWARE DESCRIPTION

A.l "PIDSIMM.PAS"

To automate the data acquisition, modeling, analysis, and
control of the hot-water-to-air heat exchanger, an integrated set
of programs were written using the TURBO PASCAL programming
language. The 4.0 version of TURBO PASCAL utilizes units, a
collection of compiled procedures and functions. One advantage of
units lies in the ability to compile, test, and debug them
separately from a main program. Once a unit is completely debugged
and compiled, it need never be recompiled. The main or calling
program has the name scheme of *.PAS while the compiled unit called
by the main program has the name scheme of *.TPU where the * can be
any eight or fewer combination of alphanumeric characters.

The main program for data acquisition, modeling, and
simulation is "PIDSIMM.PAS". PIDSIMM.PAS calls on units
"FACILITY.TPU", "FROMFILE.TPU", "DRAW.TPU", and "MODELFIT.TPU" as
shown in the flow chart Figure A.l.

A.2 "FACILITY.TPU" and "FROMFILE.TPU"

Data acquisition is accomplished by the "FACILITY.TPU" unit.
Packaged routines for accessing the analog-to-digital and digital-
to-analog interfaces of the Metrabyte DAS-16 and EXP-16 boards were
used to acquire system data inlet and outlet air temperature, inlet
and outlet water temperature, airflow rate, and water flow rate.

As seen in the flowchart of psimm.drw, if data already
acquired is to be analyzed, the compiled unit "FROMFILE.TPU" is
run. First the user is asked the number of data points to be
taken, whether upsets are to be automatically initiated, and what
control algorithm to use. Choosing algorithm 0 results in an open-
loop test.

A.3 "FITMODEL.TPU"

Models were fit by "FITMODEL.TPU" using a batch form of
multiple regression least squares. This allowed a model to be fit
immediately after data acquisition. Once parameters were
calculated, they were saved on disk to the file Param.dat.

A.4 "DSTEST.M"

This is an M file, a set of Matlab commands executed
automatically in the Matlab environment. "DSTEST.M" first calls
compiled TURBO PASCAL program "FGFRR3.EXE," which computes the
linearized closed-loop transfer function for proportional-only
control. Once the transfer function is computed, it is saved to a
disk file which is read by Matlab. Next the step response is
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simulated and a %OS is computed. Depending on the value of %OS,
the proportional gain is increased or decreased until a %OS greater
than 24 and less than 25 is found, terminating the program. The
flow chart for "DSTEST.M" is shown in Figure A.1.

A.5 "READMAT.PAS"

This is a TURBO PASCAL program to read a matrix saved in the
Matlab format and save it in ASCII format. This was used for re-
plotting the root loci plots.

A.6 "PSSPSELF.PAS"

This is a PASCAL program to simulate the response of the
nonlinear coil model to a setpoint step using both a linear and a
nonlinear control law.
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APPENDIX B: PROGRAM LISTINGS

"PIDSIMM.PAS"

($R+) (Range checking off)
($B+) (Boolean complete evaluation on)
{$S+) (Stack checking on)
($I+) (I/O checking on)
($M 65500,16384,655360) (Turbo 3 default stack and heap)
( stack heapmin heapmax )

program PIDSIMM(input,output); (7-19-89)

Uses Dos, Crt, Draw, Fitmodel, Facility, Fromfile, Pictures;

type Dataarray = array[0..820,1..7] of real; (maximum 800
datapoints:

1: Inlet air temperature
2: Outlet air temperature
3: Inlet water temperature
4: Outlet water temperature
5: Water flow
6: Air flow
7: Control signal)

type Parameters = record (model parameters)
date: string;
a: real; b: real; c: real; d: real; e: real;
f: real; g: real; h: real; j: real;

end;

type Information = record (miscelaneous data)
Filename: string;
Datatype: integer; (0: facility, 1: from file)
Datapoints: integer; (number of datapoints)
Textfile: integer; (write to text file ? 0: no, 1: yes)
Transducer: integer; (0: venturi, 1: pitot tube, 2: hot wire

anemometer)
PID: record (PID algorithm, Ki, Kp, Td)

alg:integer; Ki: real; Kp: real; Td: real; end;
(PID alg 0: open loop

1: interacting rectangular
2: non-interacting velocity
3: constant
4: step
5: self tune)

Newparam: integer; (calculate new model parameters ? 0: no,
1: yes)

Setpoint: real;
Steadystate: integer; (find steady state before beginning

test?
0: no, 1: yes)

Upsets: record
Run: integer; (run upsets ? 0: no, 1: yes)
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Double: integer; (adjust water flow after upset)
Damperon: integer; (close damper)
Damperoff: integer;- (open damper)
Heaterson: integer; (turn 15kw heaters on)
Heatersoff: integer; {turn 15kw heaters off)
Coldwateron: integer; (add cold water to system)
Coldwateroff: integer; (turn cold water off)
Setpointon: integer; (raise sestpoint)
Setpointoff: integer; (lower setpoint)
Setpointsize: real; (size of setpoint error)
Wtrflowhigh: integer; (in PID alg 4, increase water

flow)
Wtrflowlow: integer; (in PID alg 4, decrease water

flow)
end;

Paramselect: integer; (parameter set used in test)
Error model measured: real; (average error between measured
outlet air temperature and calculated outlet air temperature)
Errorsetpointmeasured: real; (average error between
setpoint and maeasured outlet air temperature)
Errorsetpointmodel: real; (average error between setpoint
and calculated outlet air temperature)
end;

Const max-buffer = 1000;
GPM toKgps = 0.06296382; (conversion for water flow,
gallons per minute to kilograms per second)
FPM to kgps = 0.001221041; (conversion for air flow, feet
per second to kilograms per second)

var J, K, Code: integer;
X: char;
Year,Month,Day,Dayofweek: word;
Monthstr, Daystr: string;
P: Parameters;
I: Information;
Paramfile: file of Parameters;
Infofile: file of Information;
Filename: string;
Numberofrecords: integer;
stop: integer; (veriable returned from facility or fromfile
to stop program)
Paramselecttemp: integer;

function getvalI(default: integer): integer;
(read string from screen and convert it to aN integer)

var Z: string;
Z-val, code: integer;
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begin
readln(Z); if Z <> '' then

begin
val(Z,Z-val,code);
getvalI := Zval;

end
else
getvalI := default;

end;

function getvalR(default: real): real;
(read string from screen and convert it to real)

var Y: string;
Y val: real;
code: integer;

begin
readln(Y); if Y <> '' then

begin
val(Y,Y)val,code);
getvalR := Y-val;

end
else
getvalR := default;

end;

procedure findfile(filename: string; var fileexists: integer);
(uses "findfirst" and "findnext to determine if file requested

exists)
var K : integer;

fileinfo : searchrec;
lastfile : string;

begin
fileexists := 1;
findfirst('\THESIS\DATA\*.*' ,anyfile,fileinfo);
if fileinfo.name <> filename then begin
repeat

findnext(fileinfo);
if lastfile = fileinfo.name then

fileexists := 0;
lastfile := fileinfo.name;

until (fileinfo.name = filename) or (fileexists = 0);
end;

end;

procedure readinfo;
(determines which information file to use and reads it)
var datatypetemp: integer;

Fileexists: integer;
begin
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datatypetemp :=I.datatype;
if I.datatype =0 then

assign (Infof ile, '\THESIS\DATA\INFO.DAT') {reserved information
file with standard data)

else begin
findfile(I.Filename+' .1N2' ,Fileexists);
if Fileexists = 1 then
assign(Infofile, '\TH.ESIS\DATA\'+I.Filename+' . N2')

else begin
findfile(I.Filename+' .INl' ,Fileexists);
if Fileexists = 1 then
assign(Infofile, '\THESIS\DATA\'+I.Filename+' .INl')

else
assign(Infofile, '\THESIS\DATA\'+I.Filename+' .INF');

end;
end;
reset(Infofile); (open information file)
read(Infofile,I);
close(Infofile);
I.Datatype := datatypetemp;

end;

procedure getupsets;
begin
window(l,l,80,25); clrscr;
writeln;
writeln('Select Upsets -1);
drawbox(l,3,80,20); window(2,4,80,20);
write(' Enter 1 for water flow step change(l)-
repeat

I.Upsets.double := getvalIl);
until I.Upsets.double in [O..1];
if I.PID.alg > 0 then
begin
write(' The setpoint is (',I.Setpoint:2:O,') -)

I.Setpoint := getvalR(I.Setpoint);
end;
write(' Time to close damper(',I.U~psets.Damperon:4,') -1)
I. Upsets. Damperon : = getvall (I. Upsets. damperon);
write(' Time to open damper(',I.Upsets.Damperoff:4,') - )
I.Upsets.Damperoff := getvall (I.Upsets.damperoff);
write(' Time to turn heaters on(',I.Upsets.Heaterson:4, 1) - 1
I. Upsets. Heaterson : = getvall (I. Upsets. heaterson) ; if I. Datatype
= 0 then begin write(' Time to turn heaters

off(',I.Upsets.Heatersoff:4,') - )
I.Upsets.Heatersoff :=getvall (I.Upsets.Heatersoff)

end
else
I. Upsets. Heatersof f =I. Upsets. Heaterson + 505; (if upsets are

added to data from file, the heaters must remain on for 505
seconds) write(' Time to turn cold water
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on(',I.Upsets.Coldwateron:4,')-
I .Upsets. Coldwateron : = getvall (I .Upsets .coidwateron);
if I.Datatype =0 then begin write(' Time to turn cold water

off(',I.Upsets.Coldwateroff:4,') - )
I .Upsets. coidwateroff : = getvall (I .Upsets. coidwateroff)

end
else

I. Upsets. Coldwaterof f := I. Upsets. Coldwateron + 500; (if upsets
are added to data from file, coldwater must reamain on for at
least 500 seconds) if I.PID.alg > 0 then begin write(' Time to
increase setpoint(' ,I.Upsets.Setpointon:4,') - )

I .Upsets. Setpointon := getvall (I .Upsets. setpointon);
write(' Time to decrease setpoint( ',I.Upsets.Setpointoff:4,')

I.Upsets.Setpointoff :=getvall (I.Upsets.setpointoff);
write(' Size of setpoint upset(' I,I. Upsets. Setpointsize: 2:0,)

I.Upsets.Setpointsize := getvalR(I.Upsets. setpointsize);
end
else
begin

I.Upsets.Setpointon :=0;
I.Upsets.Setpointoff :=0;

end;
end;

procedure correctinfo;
var Left, Top, Right, Bottom : integer;

fileinfo : searchrec;
Filename,Filename_ : string;
Fileexists,Code : integer;

begin
window(l, 1, 80, 25) ;
writeln(' For Data from the facility enter 0,');
write (I for Data from a file enter the filename-
readin (I. Filename);
Filename := '';

for K := 1 to length(I.filename) do
Filename_: Filename_ + upcase(I.Filename[K]);

I.Filename :=Filename_
if I.Filename '0' then val(I.Filename,I.Datatype,code)
else begin

I.Datatype :=1;
findfile(I.Filename+' .DAT', fileexists);
if fileexists <> 1 then begin
textcolor (white+blink);
writein; write(' File does not exist, press ctrl-break');
write (chr (7)) ;
X := readkey;

end;
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end;
drawbox(l, 3, 80, 23) ;
Filename_= I.Filename;
readinfo;
I.Filename :=Filename_
drawbox(l,3,8O,5); window(2,4,8O,5);
if I.Datatype = 0 then begin
write (' Number of datapoints -

readin (I .Datapoints);
for K := 32 to 60 do write(' ');
highvideo; write ('Run time = ',I. Datapoints*5); lowvideo;

end
else begin

for K := 2 to 60 do write(' ');
highvideo; write ('File: ',I. Filename); lowvideo;

end;
window(l,l,80,25); drawbox(l,5,80,9); window(2,6,80,9);
if I.Datatype = 0 then begin
writeln (' Enter 0 for air flow Data from Venturi,');
writein (' enter 1 for air flow Data from Pitot tube,');
write(' enter 2 for air flow Data from Hot Wire Anemometer (0)

repeat
I.Transducer := getvall(0);

until I.Transducer in [0..2];
end
else begin

write(' Enter 1 to write to an ASCII file(0)-
repeat

I.Textfile := getvall(0);
until I.Textfile in [0..1];
write (' Enter 1 to calculate new parameters (0)-
repeat

I.Newparam := getvall(0);
until I.Newparam in [O..1];

end;
window(1,1,80,25); drawbox(l,9,80,20); window(2,l0,80,20);
if (I.Newparam =0)' or (I.datatype = 0) then
begin

writeln;
writeln(' 0 =open loop');
writeln(' 1 =interacting positoinal PID rectangular approx

integral');
writein (' 2 =non-interacting velocity PID');
writeln(' 3 =Constant');
writeln(' 4 =Step ');
gotoxy(1,1); write(' Choose pid alg(',I.PID.alg,') - )
repeat

I.PID.alg := getvall(I.PID.alg);
until I.PID.alg in (0..4];
if.I.PID.alg in [l..2,4] then begin
window(l, 1, 80, 25); 10



drawbox (38, 15, 80, 20) ;
window(39, 16, 80, 20) ;

end;
case I.PID.alg of

1..2 :begin
write(' Ki(',I.PID.Ki:2:2,') -

I.PID.Ki := getvalR(I.PID.Ki);
write(' Kp($,I.PID.Kp:2:2,') -

I.PID.Kp := getvalR(I.PID.Kp);
write(' Td(',I.PID.Td:2:2,') -

I.PID.Td := getvalR(I.PID.Td);
I.Upsets.wtrflowhigh :=0;
I.Upsets.wtrflowlow :=0;

end;
4 :begin

write(' Time to set water flow hi('
,I.Upsets.wtrflowhigh,') - )

I.Upsets.wtrflowhigh := getvall(0);
write(' Time to set water flow low('

,I.Upsets.wtrflowlow,') - )
I.Upsets.wtrflowlow := getvall(0);

end;
end;

end;
window(l,l,80,25); drawbox(l,20,80,23); window(2,21,80,23);
if I.Datatype = 0 then begin
write (' Enter 1 to check for steady state (1)-
repeat

I.Steadystate := getvall(l);
until I.Steadystate in [0..1];
write('- Enter 1 to run upsets(l)-
repeat

I.Upsets.run := getvalIl);
until I.Upsets.run in [0..1];

end
else
if I.Newparam = 0 then begin
write(' Enter 1 to add upsets to file(0)-
repeat

I.Upsets.run := getvall(0);
until I.Upsets.run in [0..lJ;

end;
if I.Upsets.run = 1 then getupsets;

end;

procedure readparameters;
var Left, Top, Right, Bottom: integer;

empty: char;
begin

window(1,1,80,25); clrscr;
drawbox(l,l,80,24); 105



assign(Paramfile, '\THESIS\DATA\PARAMF.DAT');
reset (Paramfile);
Numberofrecords := filesize(Paramfile);
J := 0; K := 0;
repeat

seek(Paramfile,J);
read(Paramfile, P);
gotoxy(2, (K*3)+2);
write(J:2,' Parameters from: ',P.date);
gotoxy(2, (K*3)+3);
write(' a: ',P.a:2:6,' b: ',P.b:2:6,

I C: ',P.c:2:6,' d: t,P.d:2:6);
gotoxy(2, (K*3)+4);
write(' e: ',P.e:2:6,' f: ',P.f:2:6,

t g: ',P.g:2:6, ' h: ',P.h:2:6, ' j: 1,P.j:2:6) ;
J := J + 1; K := K + 1;
if K/7 = 1 then
begin
gotoxy(2,25); write('Press any key for more...');
X := readkey;
clrscr;
drawbox C1, 1,80, 24) ;
K := 0;

end;
until EOF(Paramfile);
gotoxy(2,25);
if I.Datatype = 0 then
write('Select paramter set(',Numberofrecords -1'

else
write( 'Select paramter set(' ,I.Paramselect,') -)

while keypressed do empty := readkey;
if I.Datatype =0 then
I.Paramselect :=getvall(Numberofrecords -1)

else
I. Paramselect :=getvall (I. Paramselect);
seek (Paramfile, I. Paramselect);
read(Paramfile,P);
close(Paramfile);
Paramselecttemp := I.Paramselect;

end;

Begin
clrscr;
randomize;
textcolor(random(6) + 1);
getdate (Year,Month, Day, Dayofweek);
str(Mt, Monthstr);
str (Day, Daystr) ;
I .Filename := Monthstr+ ' -'+Daystr;
correct info;
if (I.datatype = 1) and (I.Newparam =0) then readparameters;
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if I.Datatype = 0 then
begin

if I.PID-alg = 0 then I.Filename :=Monthstr+'-'+Daystr+'OL';
if I.PID.alg > 0 then I.Filename :=Monthstr+'-'+Daystr+'CL';I end;

if I.datatype = 0 then begin
assign (Infofile, '\THESIS\DATA\INFO. DAT');
rewrite (Infofile);
write(Infofile, I);
close(Infofile);
assign (Infofile, '\THESIS\DATA\'+I. Filename+' .INi');
rewrite (Infofile);
write(Infofile, I);
close(Infofile);
Datafromfacility (I .Filename, stop);

end
else
begin

assign (Infofile, '\THESIS\DATA\'+I. Filename+' . N2');
rewrite (Infofile);
write(Infofile, I);
close(Infofile);
if I.Newparam = 1 then Findparameters(I.Filename)
else begin

Datafromfile (I. Filename, stop);
if stop <> 0 then plotdata(I.Paramselect,I.Filename);

end;
end;

End.
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"FACILITY.TPU"

($R+) (Range checking off)
($B+) (Boolean complete evaluation on)
($S+) (Stack checking on)
($I+) (I/O checking on)
($M 65500,16384,655360) (Turbo 3 default stack and heap)
( stack heapmin heapmax )

UNIT Facility;

Interface
Uses dos,crt,tp4dl6,tp4misc,tp4tclin,stdhdr,sumstats,pictures;

procedure Datafromfacility(Filename: string; var Stop:integer);

type Dataarray = array[0..820,1..7] of real; (maximum 800
datapoints:

1: Inlet air temperature
2: Outlet air temperature
3: Inlet water temperature
4: Outlet water temperature
5: Water flow
6: Air flow
7: Control signal)

type Parameters = record (model parameters)
date: string;
a: real; b: real; c: real; d: real; e: real; f: real; g:
real; h: real;

end;

type Information = record (miscelaneous data)
Filename: string;
Datatype: integer; (0: facility, 1: from file)
Datapoints: integer; (numbe of datapoints)
Textfile: integer; (write to text file ? 0: no, 1: yes)
Transducer: integer; (0: venturi, 1: pitot tube, 2: hot wire
anemometer)
PID: record (PID algorithm, Ki, Kp, Td)

alg:integer; Ki: real; Kp: real; Td: real; end;
(PID alg 0: open loop

1: interacting rectangular
2: non-interacting velocity
3: constant
4: step
5: self tune)

Newparam: integer; (calculate new model parameters ? 0: no,
1: yes)
Setpoint: real;
Steadystate: integer; (find steady state before beginning
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test? 0: no, 1: yes)
Upsets: record

Run: integer; (run upsets ? 0: no, 1: yes)
Double: integer; {adjust water flow after upset)
Damperon: integer; (close damper)
Damperoff: integer; (open damper)
Heaterson: integer; (turn 15kw heaters on)
Heatersoff: integer; (turn 15kw heaters off)
Coldwateron: integer; (add cold water to system)
Coldwateroff: integer; (turn cold water off)
Setpointon: integer; (raise sestpoint)
Setpointoff: integer; (lower setpoint)
Setpointsize: real; (size of setpoint error)
Wtrflowhigh: integer; (in PID alg 4, increase water
flow)
Wtrflowlow: integer; (in PID alg 4, decrease water
flow)

end;
Paramselect: integer; (parameter set used in test)
Error model measured: real; (average error between measured
outlet air temperature and calculated outlet air temperature)
Errorsetpointmeasured: real; (average error between
setpoint and measured outlet air temperature)
Errorsetpointmodel: real; (average error between setpoint
and calculated outlet air temperature)

end;

(global declarations)
Const maxbuffer = 1000; (pascal requirement)

GPM toKgps = 0.06296382; (conversion' for water flow,
gallons per minute to kilograms per second)
FPM to kgps = 0.001221041; (conversion for air flow, feet
per second to kilograms per second)
Dubup = 1050; (size of change in control signal for
adjustment after upset)

var I: Information;
P: Parameters;
Infofile: file of Information;
K: integer;
Sum error: real; (error between setpoint and outlet air
temperature, used in PID procedure)
aotcountreal, aot count real old: real; (control signal in
bytes declared as real)
Filename: string;
Ks,Kr,Kc:real; (PID values for PID alg 5)
pid5flag: integer; (boolean for using PID alg 5)

Implementation

procedure Initboards; (initialize dashl6 and PI012 boards)
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var boardnum,int level,dmalevel,base adr,
digcntrl_code,port-num,err_code: integer;

begin
board num := 0; int level := 7; dma level := 1; base adr := 768;
dl6_init(boardnum,baseadr, int_level,dmalevel,err code);

board num := 1; int level := 7; dma level := 1; base adr := 816;
dig_cntrlcode := 128;
piol2_init(boardnum,base adr,dig cntrlcode,err code);

end;

procedure piol2_(dot out:integer); (signal to control upsets)
var boardnum,err_code,portnum: integer;

begin
board num := 1; port num := 0;
piol2_bous(boardnum,port num,dot_out,err code);
if err-code <> 0 then
dl6_printerrorterrcode)

end;

procedure dl6ains_(chanlo: integer; var dataval ains:integer);
var boardnum,err_code: integer; (to read data)

begin
board num := 0;
dl6_ains(boardnum,chanlo,dataval_ains,err code);
if err-code <> 0 then
dl6_print_error(err-code)

end;

procedure dl6bous_(var dataval bous:integer);
var board_num,errcode: integer; (set expl6 channel to read)

begin
board num := 0;
dl6_bous(boardnum,datavalbous,err code);
if err-code <> 0 then
dl6_rint_error(err code)

end;

procedure Datafromfacility;
var Data : Dataarray;

CO: integer; (control signal in bytes)
Newerror, Olderror, Old olderror: real; (error between
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setpoint and outlet air temperature, used in PID procedure)

procedure upsets (Filename: string; var stop: integer; initialfilag:
integer);

var Y: string;
Y val, code, err code: integer;
dot -out: byte; (-output to control upsets, passed to P1012-
procedure)
infofile: file of information;
Z: string;
Z-val: integer; (convert string to integer)
empty: char;

begin
if initialf lag = 1 then begin (in first pass through program read

information file, and initialize
data)

assign(Infofile, '\thesis\data\'+Filename+' .ini');
reset(Infofile); (open information file)
read(Infofile, I);
close(Infofile);
(write all infromation to screen)
clrscr;
drawbox (3 ,9,80, 24) ;
gotoxy(5,l0);
write( 'The upsets from the f ile \thesis\data\'I+I. Filename+' inf
are - )
gotoxy(5,12); write(ISetpoint is: ',I.Setpoint:2:0,I
degrees');
gotoxy(5,13); write('Steady state: ');

if I.Steadystate = 1 then write('yes') else
write('no');

gotoxy(5, 14); write( 'Filename: \thesis\data\' ,I.Filename, '* *);

gotoxy(5,15); write('Datatype: ');
if I.Datatype - 1 then write('from. file') else

write('from. facility');
write (' Datapoints: ',I .Datapoints,

ITime: ',I.datapoints*5,' Textfile: ');
if I.Textfile = 1 then write('yes') else

write('no');
gotoxy(5,16); write('PID alg: ');

case I.PID.alg of
0: write('open loop');
1: write ('interacting rectangular');
2: write ( non-interacting velocity');
3: write('constant');
4: write('stept);
5: write('self tune');

end;
write(' Ki: ',I.PID.Ki:2:2,



IKp: ',I.PID.Kp:2:2,' Td:
',I.PID.Td:2:2);

gotoxy(5, 17); write( 'New parameters: ');
if I.Newparam = 1 then write('yes') else

write('no');
gotoxy(5,18); write('Run upsets: ');

if I.Upsets.run = 1 then write('yes') else
write ('no');

write(' Valve upset: ');
if I.Upsets.double = 1 then write('yes') else

write ('no');
gotoxy(5, 19); write( 'Damperon: ',I.Upsets.Damperon,

IDamperoff: ',I.Upsets.Damperoff);
gotoxy(5, 20); write( 'Heaters on: '11 .Upsets.Heaterson,

IHeaters off: ',1 .Upsets.Heatersoff);
gotoxy(5, 21); write( 'Cold wtr on: ',I .Upsets.Coldwateron,

ICold wtr of f: ',I.Upsets.Coldwateroff);
gotoxy(5,22); write( 'Setpoint up: ',I.Upsets.Setpointon,

ISetoint down: ',I.Upsets.Setpointoff,
ISize: ',I.Upsets.Setpointsize:2:2,'
degrees');

gotoxy(5, 23); write( 'Wtr flow high: ',I.Upsets.Wtrflowhigh,
IWtr flow low: ',I.Upsets.Wtrflowlow);

gotoxy(5,25) ; write('Enter 0 if this is incorrect(l) - 1

while keypressed do empty := readkey; (empty keyboard buffer)
(if any information is incorrect the user can start over)
readln(Z); if Z <> '' then

begin
val (Z,Z Zval, code); (convert string to integer)
stop := Z-val;

end
else stop := 1; (passed to PIDSINM)

if stop = 0 then exit; (do not run rest of unit)
if I.PID.alg = 0 then d16_aous(O,O,1050,err code);

end; (initialization)
(run every pass)
if initialflag = 0 then begin

if K < 5 then dot-out := 0; piol2_(dot-out); (turn all upsets
off)
if (K * 3 > I.Upsets.Damperon - 4) and

(K * 3 < I.Upsets.Damperon + 4) then begin (check time for
upset)

dot-out := dot-out or $08; piol2_(dot-out); (send signal for
upset to P1012_ procedure)
writeln('closing damper');
If I.Upsets.Double = 1 then begin (adjust waterf low if asked
for)
aot-count-real := aot-count-real + Dubup;
CO : = round (aot -count -real);
d16_aous(0,0,Co,err code); (output to E/P)
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end;
end;
if (K * 3 > I.Upsets.Damperoff - 4) and

(K * 3 < I.Upsets.Damperoff + 4) then begin
dot out := dot-out .and $F7; piol2_(dot out);
writein ('opening damper');
if I.Upsets.Double = 1 then begin
aot-count-real := aot-count -real - Dubup;
CO := round(aot -count real);
d16_aous(0,0,CO,err code);

end;
end;
if (K * 3 > I.Upsets.Heaterson - 4) and

(K * 3 < I.Upsets.Heatersoi + 4) then begin
dot out := dot out or $06; piol2_(dot-out);
writeln('Turning Heaters On');
If I.Upsets.Double = 1 then begin

aot-count-real := aot-count-real + Dubup;
CO : = round (aot count real);
d16_aous(0,0,CO,errc6ode); (output to E/P)

end;
end;
if (K * 3 > I.Upsets.Heatersoff - 4) and

(K * 3 < I.Upsets.Heatersoff + 4) then begin
dot out : = dot out and $F9; piol2_(dot out);
writeln('Turning Heaters Of f');
If I.Upsets.Double - 1 then begin
aot-count-real := aot-count. real - Dubup;
Co : = round (aot count real);
d16_aous(0,0,CO,err-code); (output to E/P)

end;
end;
if (K * 3 > I.Upsets.Coldwateron - 4) and

(K * 3 < I.Upsets.Coldwateron + 4) then begin
dot out := dot-out or $01; piol2_(dot-out);
writeln ('Turning Cold Water On');
If I.Upsets.Double - 1 then
begin aot count real :- aot count-real - Dubup;
CO :-= round(aot count. real);-
d16_-aous(0,0,CO,err ode); (output to E/P)

end;
end;
if (K * 3 > I.Upsets.Coldwateroff - 4) and

(K * 3 < I.Upsets.Coldwateroff + 4) then begin

113



dot out := dot out and $FE; piol2_(dotout);
writeln('Turning Cold Water Off');
If I.Upsets.Double = 1 then begin

aot countreal := aotcount real + dubup;
CO := round(aotcountreal);
dl6_aous(0,0,CO,err_code); (output to E/P)

end;
end;
if (K * 3 > I.Upsets.Setpointon - 4) and

(K * 3 < I.Upsets.Setpointon + 4) then begin
I.Setpoint := I.Setpoint + I.Upsets.Setpointsize;
writeln('Setpoint increased by 5');

end;
if (K * 3 > I.Upsets.Setpointoff - 4) and

(K * 3 < I.Upsets.Setpointoff + 4) then begin
I.Setpoint := I.Setpoint - I.Upsets.Setpointsize;
writeln('Setpoint decrease by 5');

end;
end;

end;

procedure calcpid; (of datafromfacility)
var

scan min: real; (scans per minute)
PIDcalc: real; (solution to algorithm)
aotcount: integer; (control signal in bytes)

begin
scan min := 5/60;
oldolderror := olderror; (save setpoint - measured outlet

air temperature at time - 2)
olderror := newerror; (save setpoint - measured outlet air

temperature at time - 1)

If (CO < 1496) and (CO > 610) then (anti-windup)
sumerror := sum-error + olderror;

(anti-windup, actual range 1400 to 3400 for a 0-5V 12 bit
A/D)
newerror := -I.Setpoint + Data[K,2]; (reverse acting)

Case I.PID.alg of

1: begin
pid-calc := newerror * I.PID.Kp * (1 + I.PID.Td /

scan_min) -

(old-error * I.PID.Kp * I.PID.Td / scan_min) +
(sum error * I.PID.Ki * I.PID.Kp * scan_min);

aotcountreal := 4095 * pid-calc/5; (control signal in
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real)
end;
2: begin

pid calc := I.PID.Kp*(newerror - olderror) +
I.PID.Ki*(5) * newerror +
(I.PID.Td/(5)) *
(new error - 2*(old error) + oldolderror);

aot countreal:= 4095 * PID-calc/5;
aot-_countrealold:=aotcountreal;

end;

3: aot count real := 1350.0;

4: begin
if (K * 3 > I.Upsets.Wtrflowhigh - 4) and
(K * 3 < I.Upsets.Wtrflowlow - 4) then aotcountreal
1600;
if (K * 3 > I.Upsets.Wtrflowlow - 4) then aotcountreal
:= 200;

end;

5: begin
pid calc := Kc*newerror;
aot count real:= PID_calc;
if (aot_countreal > 610) and (aotcountreal < 1496) then
aot count real := aotcountrealold + aot_countreal;

if pid5flag-= 1 then
aot count-real := 1150;

aot count real old:=aot count real;
end;

end; (Case)

Data[K,7] := aot count real; (0 - 100%)
if aot count-real >= 1496 then aot-count real := 1496

(valve never closes)
(min MdotW - 1.3gpm)

else
if aot count-real < 610 then aot-count real := 610;
aot count :--round(aotcount real); ( declared in this
procedure )
CO := aot_count; (CO declared globally) (0 -
4095)

end;

procedure PID; (of datafromfacility)
const max-buffer = 1000;
var last volts, volts: array[0..1] of real;

lsv,hsv,llim,hlim,up: real;
valout : integer;
err code,boardnum,chanlo: integer;
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begin
if K >= 2 then
begin

New error -(I.Setpoint - Data[K,2J);
old error :=-(I.Setpoint - Data(K-l,2]);
Old~old -error :=-(I.Setpoint - Data[K-2,2]);
isv := 0; hsv :=5; llim := 0; hlim := 5;
board num :=0; chanlo := 0;
up := 5;
calc-pid;
d16_-aous (board num, chanlo,CO,err code); (output to E/P)

end
else
Data[K,7] := 0;

end; (procedure PID)

procedure get -data; (of data -from -facility)
var Temp: array[0..3J of real; (temporary data storage

0: Inlet air temperature
1: outlet air temperature
2: Inlet water temperature
3: outlet water temperature)

J: integer; (counter)
GPMin, FPMin, FPMtemp, V: real; (temporary data storage)
cjc -bin: integer; (dashl6 requirments)
dataval-ains: integer;

begin
mnit boards;
dl6a'ins_(7,dataval -ains); (get cold junction temperature)
cjc -bin := dataval-ains;
for K := 0 to I.Datapoints do begin

delay (3000);
if I.Upsets.Run = 1 then upsets(Filename,stop,0);
for J := 0 to 3 do begin (get temperatures)

dl6bous_(J); (set expl6 channel)
dl6ains_(0,dataval-ains); (read data)
Temp[J] := expl6_tc lin(dataval_ains,1000,cjc _bin, 'Ti);
(linearize thermocouple data)

end;
Temp[0] :=Temp[0) - 0.182;
Temp[2) : Temp[2]'+ 0.296; (correct for offsets)

(claculated from tests of 1/24/89)
dl6bous_(4); (set expl6 channel to read water flow)
dl6ains_(0,dataval ains);
if (dataval -ains * (50/2048)) > 48.22 then GPMin := 5.40
else if CO > 1496 then GPMin := 0.00
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else GPMin := 0.01267 + (0.11173 * (dataval-ains * (50/2048)));
FPMtemp := 0;
for J:= 1 to 4 do begin (average air flow to reduce noise)

if I.transducer = 1 then dl6ains_(3,dataval-ains)
else dl6ains (5,dataval ains);
V := dataval ains * 5 / 2048;
if I.Transducer = 2 then (Hot Wire Anemometer)
FPMin := -16.9066 + 259.0772 *V - 167.9884 *V*V + 250.9507
*V*V*V;
if I.Transducer 1 then ( Pitot-Tube
FPMin := 15.746*sqrt(((Temp[1)*9/5)+492)*abs(V));

if I.Transducer = 0 then ( Venturi
FPMin := 14.262*sqrt(((Temp[1)*9/5)+492)*abs(V));
FPMtemp := FPMtemp + FPMin;

end;
FPMin := FPMtemp/4;
Data[K,1) : Temp[0];
Data[K,2J : Temp~l];
Data[K,3) : Temp[2];
Data[K,4) :=Temp[3J;
Data[K,5] :=GPMin; if Data[K,5J < 0 then Data[K,5) : 0;
Data(K,6] :=FPMin; if Data(K,6J < 0 then Data[K,6) : 0;'
PID;
writeln( (K*5) :2,1 ' ,Data[K,1J :2:2,' 1,Data[K,2) :2:2,

I',Data[K,3]:2:2,' ',Data[K,4):2:2,'
',Data(K,5J :2:2,

I',Data[K,6J:2:2,' ',Data(K,7):2:3(,'
',Data[K,8] :2:2,

I ,Data[K,9):2:2));
end;

end; (procedure get-data)

procedure writedata;
var Writefile: file of real;
begin

write('Writing to '+Filename);
assign (writef ile, Filename);
rewrite (writefile);
for K := 0 to I.Datapoints do begin
write(writefile,Data[K,1J,Data[K,2J,Data(K,3],Data(K,4],

Data[K,5J,Data(K,6),Data(K,7](,Data(K,8J,Data(K,9]));
if (K/40 - INT(K/40) < 0.10) and (K/40 - INT(K/40) > -0.10)
then write('.');

end;
close (writefile);
writein;

end; (procedure write-file)

procedure Steady state(condition : integer);
117



var Datapoints_stored: integer; (temperary storage)
Runupsets_stored: integer; (temporary storage)
Minair-temp, Maxair temp: real;

begin
Datapointsstored := I.Datapoints;
Runupsets_stored := I.Upsets.Run;
I.Upsets.Run := 0; (do not run any upsets)
I.Datapoints := 24; {steady state for 24 counts)
repeat
getdata;
Min _air temp := Data[0,2]; (initialize)
Maxair temp := Data[0,2];
for K := 1 to I.Datapoints do begin

if Data[K,2] > Maxairtemp then Maxair temp := Data(K,2];
if Data[K,2] < Minairtemp then Minair temp := Data[K,2];

end;
writeln('Temp difference = ',ABS(Min-air-temp_
Maxair temp) :2:2);

until ABS(Min air temp - Maxair temp) < condition;
Filename := '\thesis\data\'+I.Filename+'.ss';
writedata(o);
I.Datapoints := Datapointsstored;
I.Upsets.Run := Runupsetsstored;

end;

procedure IntegralOnlyTuning(var Ks,Kr,Kc:real);
(PID alg 5)
const numobs = 50;

numcol = 1;
Var

dataset : recmat;
dataset2 : array(O..500] of real;
Noise Tao : real;
err code : integer;
Nloop,Td : integer;
minima,maxima,range,sumxx,mean,varience,stddev,semean,mode:
ShortVector;
cjc bin: integer;
dataval_ains,datavalbous: integer;
Counter : integer;
Minairtemp,Maxairtemp: real;
Tao fs,Tao ss: real;
Tc,Tc_calcTclow,Tchigh: real;
S: real;
X :char;
steadystatepass: integer;
statfile: text;

procedure Small_data(writetofile : integer);
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init-boards;
dl6ains_(7,dataval ains);
cjc bin := dataval~ains;
For K := 0 to (Numobs-l) do begin

delay(500);
dl6bous_(l);
dl6ains_(0,dataval -ains);

d at a s et K, 0)
expl6-tc lin(dataval.ains,tc bin in,l000,cjc bin, 'T');

dataset2[steadystatepass i 50 + K] := dataset[K,OJ;
writeln('(',K:2,') ',dataset[K,0):5:2);
if writetofile = 1 then
writeln(statfile,'(',K:3,') ',dataset[K,O]:5:2);

end;
end; (procedure SmallData)

Begin
assign (statfile, '\thesis\data\sumstat.dat');
d16_aous(0,0,1150,err-code);
pid5flag := 1;
steady state(l);
pid5flag := 0;
steadystatepass := 0;
rewrite (statfile);
repeat

small-data~i);
Min _air-temp :=Dataset(0,0];
Max -air temp :=Dataset[O,O];
for K := 0 to (numobs-1) do begin

if Dataset[K,0) > Max air-temp then Max-air-temp :

Dataset[K,0);
if Dataset(K,0) < Min-air-temp then Mm _air-temp :

Dataset(K,0J;
end;
writeln( 'Pass ',steadystatepass:2,

I Temp difference = ,ABS(Min air temp
Max-air 'temp):2:2);

steadystatepass := steadystatepass + 1;
until ABS(Min-air-temp - Max-air-temp) < 0.5;

Tao-ss := (Mm _air temp + max-air temp)/2;

SummaryStats (dataset, numobs, numcol, minima, maxima, range, sumxx ,mean
,varience,
stddev, semean,mode);
NoiseTao := 3.0*stddev(0);
d16_aous(0,0,CO-200,err code); (Step output to E/P)
steadystatepass := 0;
repeat

small-data(l);
Mm _air-temp := Dataset(0,0);
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Max -air temp :=Dataset[0,0J;
for counter 1 to (numobs-l) do
begin

if Dataset~counter,0] > Max-air-temp then Max air~tenp
Dataset(counter, 0];
if Dataset~counter,0] < Mm _air-temp then Mm _ irterp:
Datasettcounter, 0];

end;
writeinC' Pass ',steadystatepass: 2,

Temp difference = ',ABS(Min-air temp-
Max -air -temp):2:2);

steadystatepass := steadystatepass + 1;
until ABS(Min air temp - Max-air temp) < 0.5;
Td := 0;
Repeat

Td := Td + 1;
Until (dataset2[Td] - mean[0] > NoiseTao*l.25)

or (Td > steadystatepass * 50);
Tao fs :=(Mm -air temp + max-air-temp)/2;

Ks := (Tao-fs - Tao ss)/200;

Tc Tcaic := Tao ss + (Tao-fs - Tao-ss) * 0.63;
K := 0;
repeat

if (K > 0) and (K < steadystatepass * 50) then begin
Tc low :=Dataset2[K-1];
Tc-high :=Dataset2[K);

end;
K := K + 1;

until (Tc -calc > Tc-low) and (Tc-calc < Tc-high);
writeln;
Tc :=K - 1.5;

S :=((Td/Tc)*(Td/Tc) + 4 -(Td/Tc + 2))/(2*Td);
Kr :=EXP(Td*S) * ((l/Tc) + S) * S;
Kc :=Kr * (Tc/Ks);
writeln(minima[0):2:2,' ',maxima[0):2:2,1 1,range(01:2:2,' 1,

sumxx[0]:2:2,' ',mean(0):2:2,' 1,varience[0):2:2,' 1,
stddev[0]:2:2,' ',semean[0]:2:2);

noise-tao:2:5,' 1,S:2:2,' ',Ks:2:5,1 ',Kr:2:5,'
1,Kc:2:5);
writeln(statfile,minima[0):2:2,' ',maxima(0J:2:2,1

',range[0]:2:2,' ',

sumxx(0]:2:2,' ',mean(0J:2:2,' ',varience(0):2:2,' 1,
stddev[0]:2:2,' ',semean(03:2:2);

writeln(statfile,Tao-fs:2:2,' ',Tao-ss:2:2,' ,d:,
',Tc:2:2,1 ', 120



noisetao:2:5,' ',S:2:2,0 ',Ks:2:5,' ',Kr:2:5,'
',Kc:2:5);

close(statfile);
d16 aous(0,0,1150,errcode);

end; (procedure IntegralOnlyTuning)

begin (procedure datafromfacility)
window(l,l,80,25);
aot count real := 1050;
aoct_countrealold := aot_countreal;
K := 0;
Init boards;
sum error := 0;
upsets(Filename,stop, l);
if stop <> 0 then
begin

clrscr;
{I.PID.Kp := I.PID.Kp*5/I.Setpoint;)
writeln;
if I.PID.alg = 5 then begin
writeln('Calculating PID values');.
integralonlytuning(Ks,Kr,Kc);

end;
if I.Steadystate = 1 then
begin

writeln('Waiting for steady state');
steady state(l);

end;
writeln;
writeln('Data from facility');
getdata;
Filename := '\thesis\data\'+I.Filename+'.dat';
writedata(0);

end;
end; (procedure datafromfacility)

End.
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{$R+) (Range checking off)
($B+) (Boolean complete evaluation on)
($S+) (Stack checking on)
{$I+) (I/O checking on)
{$M 65500,16384,655360) (Turbo 3 default stack and heap)

UNIT Fitmodel;

Interface
Uses Dos, Crt, StdHdr, MatMath;
procedure Findparameters(Filename: string);

type Parameters = record
date: string;
a: real; b: real; c: real; d: real;
e: real; f: real; g: real; h: real; j: real;

end;

type Information = record
Filename: string;
Datatype: integer;
Datapoints: integer;
Textfile: integer;
Transducer: integer;
PID: record

alg:integer; Ki: real; Kp: real; Td: real; end;
Newparam: integer;
Setpoint: real;
Steadystate: integer;
Upsets: record

Run: integer;
Double: integer;
Damperon: integer;
Damperoff: integer;
Heaterson: integer;
Heatersoff: integer;
Coldwateron: integer;
Coldwateroff: integer;
Setpointon: integer;
Setpointoff: integer;
Setpointsize: real;
Wtrflowhigh: integer;
Wtrflowlow: integer;

end;
Paramselect: integer;
end;

var I: information;
P: Parameters;
Infofile: file of Information;
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Paramfile: file of Parameters;
Numberofrecords: integer;

Implementation

procedure findfile(filename: string; var fileexists: integer);
var K : integer;

fileinfo : searchrec;
lastfile : string;

begin
fileexists := 1;
findfirst( '\THESIS\DATA\*.*' ,anyfile,fileinfo);
if fileinfo.name <> filename then begin
repeat

findnext (fileinfo);
if lastfile = fileinfo.name then
fileexists := 0;

lastfile := fileinfo.name;
until (f ileinfo.name = filename) or (fileexists =0);

end;
end;

Procedure Param;
var

readfile, write-file: file of real;
Air -temp in, Air "temp out, Weter~temp in, Water temp_ out,
Water-flow, Air-flow, Controlsignal, WaterSS, AirSS,
Air -temp in l,Air temp out l,Water-temp in l,Water-temp out_1,
Water -flow -1,Airjflow_1: real;
K: integer;
Twbar, DTA, Dtw, A, B, C, D, E, F, G, H, J: real;
Filename: string;

Begin
Filename := *\thesis\data\'+I.Filename+'.dat';
Writeln( 'Reading from '+I.Filename+' V');
assign(readfile,Filename);
Filename := '\thesis\data\'+I.Filename+' .par';
Writeln('Writing to '+Filename);
assign(write file,Filename);
reset(readfilfe);
rewrite(write-file);
K := 0;
repeat

read (readf ile, Air -temp_in,Air temp out ,Water temp in,
Water-temp out,

Water -flow,Air-flow, Control signal (,WaterSS ,AirSS));
K := K + 1;
if K > 1 then
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begin
Twbar := (Watertemp_in l + Water tempout_l)/2;
DTw := (Water tempout - Watertempout 1) ;
A := Water flow_1 * 0.06296382 * (Water tempin_1 -

Watertempout 1) ;
B := Airtemp in 1 - Twbar;
C := Waterflow_1 * 0.06296382 * (Air temp_in l - Twbar);
D := Airflow_1 * 0.001221041 * (Air_temp_in_l - Twbar);
Twbar := (Watertemp_in l + Water-tempout_1)/2;

DTA := -(Air tempout_1 - Air tempout);
E := Airflow_1 * 0.001221041 * (Air tempin 1 -

Airtempout_1);
F := Twbar - Air tempin 1;
G := Waterflowf * 0.06296382 * (Twbar - Airtempin 1);
H := Air flow_1 * 0.001221041 * (Twbar - Airtemp in 1);
J := Air-temp-in - Airtemp_in l;

if (K/40 - INT(K/40) > -0.10) and (K/40 - INT(K/40) < 0.10)
then
write('.' );

write(writefile,Dtw,A,B,C,D,DTA,E,F,G,H,J);
end;
Air tempin 1 := Air tempin;
Air_tempout_1 := Airtempout;
Watertempin 1 := Watertempin;
Water_tempout_1 := Watertempout;
Water flow_1 := Waterflow;
Air flow 1 := Air flow;

until EOF (readfile);
I.Datapoints := K;
close(readfile);
close(writefile);
writeln;

end;

procedure Findparameters;
type

square4x4 = Array[0..3,0..3] of real;
Vector = Array[0..4] of real;

var

A, Ainv, AA, AAinv, B, BB, C, CC : recmat;
X, xx : Vector;
Count, M : integer;
shit,Y,YY,Det,RSSW,RSSA : Real;
K, N, H : Integer;
DataFile, DataOutFile : file of real;
Inlable, Outlable : string[10];
Fileanal : string;
FirstLine : string[50];
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readfile : text;
Infofilename : string;
Z : char;
fileexists : integer;

Begin
window(1, 1, 80, 25) ;
gotoxy(1,24);

findfileCf ilename+' . N2' ,fileexists);
if fileexists = 1 then begin

assign(Infofile, '\thesis\data\'+Filename+' .in2');
end
else begin

findfile(filename+' .INi' ,fileexists);
if fileexists = 1 then begin
assign(infofile, '\thesis\data\'+filename+' .ini');

end
else begin

assign(infofile, '\thesis\data\'+filename+' .inf');
end;

end;
reset(Infofile);
read(Infofile, I);
close(Infofile);
Param;
FillChar(A,Sizeof (A) ,0);
FillChar(AA,Sizeof(AA) ,O);
FillChar(B,Sizeof (B) ,O);
FillChar(BB,Sizeof(BB) ,0);
FillChar(C,Sizeof (C) ,O);
FillChar(CC,Sizeof (CC) ,O);
FillChar(X,Sizeof(X) ,0);
FillChar(XX,Sizeof (XX) ,O);
FillChar(Ainv,Sizeof(Ainv) ,0);
FillChar(AAinv,Sizeof(AAinv) ,0);
Count := 0;
Fileanal := '\thesis\data\'+I.Filename+' .par';
writeln('Reading from '+Fileanal);
Assign (DataFile, Fileanal);
Reset (DataFile) ;

Read(Datafile,Y,X(OJ ,X[1] ,X(2) ,X(3] ,YY,XX[O) ,XX[1] ,XX[2) ,XX[3J ,XX
(4]);

(dont use first data points, sometime get bad readings)
N := I.Datapoints - 1;
For M := 2 to N Do
begin

Read(DataFile,Y,X(oJ ,X(lJ ,X[2),X[3J ,YY,XX[O) ,XX(1) ,XX[2) ,XX(3) ,XX
[4]);

if (M/40 - INT(M/40) > -0.10) and (M/40 - INT(M/40) < 0.10)
then write('.'); 125



For K := 0 to 3 do begin (Column)
For H := 0 to 3 do begin (Row)
A[K,H] : A[K,H) + (X[KJ*X(H));

end; { X'X3
C[K,0) := C[K,O] +(X[K]*Y);

end; {X'Y)

for K := 0 to 4 do begin
for H := 0 to 4 do begin
AA[K,H) := AA[K,H] + (XX(K]*XX[HJ);

end;
CC[KO] := CC[K,01 + (XX[K]*YY);

end;

end; (for 1 to N)
Close (DataFile) ;
writein;
MatInvert (A,4 ,det,Ainv);
MatInvert (AA, 5, det,AAinv);
MatProd(Ainv,C,4,4,4,B);
MatProd(AAinv,CC,5,5,5,BB);
Writeln('A B C D)
Writeln(B(O,0] :2:6,1 '1,B[110] :2:61' ',B[2,0] :2:6,'

1,B[3,0] :2:6) ;
writein;
writeln('E F G H J)
Writeln(BB[0,0]:2:6,1 ',BB[1,0]:2:61' ',BB[210]:2:6,'

,BB[3,0):2:61' ',BB[4,0):2:6);
assign(Paramfile, '\thesis\data\Paramf.dat');
reset(Paramfile);
Numberofrecords := filesize(Paramfile);
for K := 0 to Numberofrecords - 1 do
begin

read(Paramfile,P);
if PMate = I.Filename then
begin

writeln( 'Parameter set named ',I.Filename,'I already exists');

writeln(' choose a different name,');
writeln(' or enter 0 to ingnore-
readln(I.Filename);

end;
end;
P.Date := I.Filename;
P.a :=B(0,0]; P.b :=B[1,0]; P.c := B(2,O]; P.d :=B(310];
P.e :=BB[0,0]; P.f :=BB[1,OJ;
P.g :=BB[2,0]; P.h :=BB[3,OJ; P.j := BB(41O);
seek (Paramfile, Numberofrecords);
if I.Filename <> '0' then write(Paramfile,P);
close(Paramfile);12

end;12



End.
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"FROMFILE.TPU"

($R+) (Range checking off)
($B+) {Boolean complete evaluation on)
($S+) (Stack checking on)
($I+) (I/O checking on)
($M 65500,16384,655360) (Turbo 3 default stack and heap)
{ stack heapmin heapmax )

UNIT Fromfile;

Interface
Uses dos,crt,pictures;

type Dataarray = array[0..820,1..7] of real; (maximum 800
datapoints:

1: Inlet air temperature
2: Outlet air temperature
3: Inlet water temperature
4: Outlet water temperature
5: Water flow
6: Air flow
7: Control signal)

type Parameters = record (model parameters)
date: string;
a: real; b: real; c: real; d: real; e: real;
f: real; g: real; h: real; j: real;

end;

type Information = record (miscelaneous data)
Filename: string;
Datatype: integer; (0: facility, 1: from file)
Datapoints: integer; (number of datapoints)
Textfile: integer; (write to text file ? 0: no, 1: yes)
Transducer: integer; (0: venturi, 1: pitot tube, 2: hot

wire anemometer)
PID: record (PID algorithm, Ki, Kp, Td)

alg:integer; Ki: real; Kp: real; Td: real; end;
(PID alg 0: open loop

1: interacting rectangular
2: non-interacting velocity
3: constant
4: step
5: self tune)

Newparam: integer; (calculate new model parameters ? 0:
no, 1: yes)

Setpoint: real;
Steadystate: integer; (find steady state before beginning
test? 0: no, 1: yes)
Upsets: record

Run: integer; (run upsets ? 0: no, 1: yes)
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Double: integer; (adjust water flow after upset)
Damperon: integer; (close damper)
Damperoff: integer; (open damper)
Heaterson: integer; (turn 15kw heaters on)
Heatersoff: integer; (turn 15kw heaters off)
Coldwateron: integer; (add cold water to system)
Coldwateroff: integer; (turn cold water off)
Setpointon: integer; (raise sestpoint)
Setpointoff: integer; (lower setpoint)
Setpointsize: real; (size of setpoint error)
Wtrflowhigh: integer; (in PID alg 4, increase water
flow)
Wtrflowlow: integer; (in PID alg 4, decrease water
flow)

end;
Paramselect: integer; (parameter set used in test)
Error model measured: real; (average error between measured
outlet air temperature and calculated outlet air

temperature)
Errorsetpointmeasured: real; (average error between
setpoint and maeasured outlet air temperature)
Error setpointmodel: real; (average error between setpoint
and calculated outlet air temperature)

end;

procedure Datafromfile(Filename:string; var Stop: integer);

Const max buffer = 1000;
GPM to Kgps = 0.06296382; (conversion for water flow,

gallons per
minute to kilograms per second)

FPM to kgps = 0.001221041; (conversion for air flow, feet
per second

to kilograms per second)

var P: Parameters;
I: Information;
K,J: integer; (counters)
Sum error: real; (setpoint - measured outlet air

temperature)
Kc,Kr,Ks: real; (PID constants from PID alg 5)
Filename: string;
CO, CO_1 : real; (control signal, last control signal)
Newerror, Olderror,
Oldolderror: real; (setpoint - measured outlet air

temperature,
timeo, time-l, time-2)

delay: integer; (time between datapoints)
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function XtoY(X,Y:real):real; (raise x to a power y)
var Z: real;
begin

if X = 0 then XtoY := 0
else begin

Z := Y * ln(X);
XtoY := exp(Z);

end;
end;

procedure findfile(filename: string; var fileexists: integer);
(uses "findfirst" and "findnext" to determine if file exists)
var K : integer;

fileinfo : searchrec;
lastfile : string;

begin
fileexists := 1; (set boolean to affirmative)
findfirst('\THESIS\DATA\*.*',anyfile, fileinfo);
if fileinfo.name <> filename then begin (if first file in

directory is not
looked for file,

continue)
repeat

findnext(fileinfo); (check each file for filename)
if lastfile = fileinfo.name then
fileexists := 0; (if file found set boolean to negative)

lastfile := fileinfo.name;
until (fileinfo.name = filename) or (fileexists = 0);

end;
end; (findfile)

procedure equals(Upsettime,Upsettimeoff: integer;
var equal:boolean; var Upseton,Upsetoff:

integer);
(is time within +- delay of upset time)
begin

if (K * delay > Upsettime - (delay + 1))
and (K * delay < Upsettime + (delay - 1)) then
equal := true

else
equal := false;

Upseton := ROUND(Upsettime/delay);
Upsetoff := ROUND(Upsettimeoff/delay);

end;
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procedure Datafromfile; (this procedure does everything)
var Data : Data-array;

my real;

procedure PID;
const max buffer = 1000;
var last volts, volts: array[0..l] of real;

lsv,hsv,llim,hlim,up: real;
err-code: integer;

procedure calcpid;
const aiphal = 0.0165; alpha2 =-0.1755; alpha3 = 0.5757;

alpha4 = -0.1778;
var aot count real, aot_count real_old, PID-calc: real;

aot~count: integer; (control signal in bytes)
Mdotwbar :real;
Mwcount :byte;
alphal, alpha2, alpha3, alpha4 : real;
Numwavg :integer;
Kpmult :real;

begin
if (CO < 1496) and (CO > 610) then (anti-windup)

sum-error :=sum-error + old-error; (deg C)

Case I.PID.alg of

1:
begin (degC *Kp(5V/degC))

pid calc :=610 + (I.PID.Kp*409.5*(Data(K,2]-
I.Setpoint));

aot -count-real := pid-calc;
end;

2:
begin

Numwavg :=round(I.PID.Ki);
Kpmult :=I.PID.Td;
Mdotwbar :=0;
If K > numwavg then
begin

For mwcount := 1 to numwavg do mdotwbar :=mdotwbar
+ (Data[K-mwcount,5]);
mdotwbar := mdotwbar/numwavg;

end
Else Mdotwbar := Data(K-1,5];
I. PID. Kp : = (alphal*mdotwbar*mdotwbar*mldotwbar)

+ (alpha2*mdotwbar*mdotwbar)
+ (alpha3*mdotwbar)
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+ alpha4;
I.PID.Kp := I.PID.Kp * Kpmult;
writeln(I.PID.Kp:2:2);
pid caic := 610 + (409.5 * I.PID.Kp *new-error);
aot~count-real := pid-calc;

end;

3: (constant output)
aot-count-real := 1350.0;

{PID aig 4 is in the upset procedure)

5:
begin
pid calc := Kc*new error;
aot~count-real:= PID-caic;
if (aot-count-real > 610) and (aot-count-real < 1496)

then
aot -count -real := aot-count-real-old + aot-count-real;

aot-count-real-old:=aot count-real;
end;

end; (Case)

if (aot -count-real > 4095) or (aot count-real < 0) then
begin

if aot count real > 4095 then aot count real := 4095;
if aot~count-real < 0 then aot 6count real := 0;
if aot~count-real -old > 4095 then aot~count -real-old := 4095;
if aot-count-real-old < 0 then aot-count-real-old := 0;

end;
aot count := round(aot count-real); (declared in this

procedure )
CO_1 := CO;
CO := aot count; (uses PID calculation, not CO of

actual test)
end;

begin
New -error :=-(I.Setpoint - Data[K,2J);
old -error :=-(I.Setpoint - Data[K-1,2J);
Old old error :=-(I.Setpoint - Data[K-2,2]);
lsv := 06; hsv :=5; hlim := 0; hlim := 5;
up := 5;
calcpid;
If CO_1 < 660 then CO_1 :=660;
If CO_-1 > 1440 then CO_1 :=1440;
my := (-4.1290589864E+01) + ((3.0932439193E-01) *COl1) +

((-3.2681341813E-04) * XtoY(COl1,2))
+ ((9.5607316380E-08) * XtoY(COl1,3));

Data[K,5] := 0.01267 + (0.11173 * my); (gpm)
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if DatarK,5] < 1.19 then Data(K,5] := 1.19;
if Data[K,5] > 5.37 then Data[K,5] := 5.37;

end; (procedure PID)

procedure upsets(Filename:string; J:integer; var stop:
integer);

var Z: string;
Z_val, code: integer;
Upseton, Upsetoff: integer;
Infofilename: string;
Infofile: file of Information;
Paramfile: file of Parameters;
Upsetfile: file of integer;
Datachange: Integer; (size of change in data during
upsets)
M: integer;
empty: char;
equal: boolean;
fileexists: integer;
extension: string;begin

if J = 1 then begin (initialize data only on the first pass)
findfile(filename+'.IN2',fileexists); (determine which

information file to open)
if fileexists = 1 then begin

assign(Infofile,'\thesis\data\'+Filename+'.in2');
extension := '.IN2';

end
else begin

findfile(filename+'.INl',fileexists);
if fileexists = 1 then begin

assign(infofile,'\thesis\data\'+filename+'.inl');
extension := '.IN1';

end
else begin

assign(infofile,'\thesis\data\'+filename+'.inf');
extension := '.INF';

end;
end;
reset(Infofile); (open information file)
read(Infofile,I);
close(Infofile);
assign(Paramfile,'\thesis\data\paramf.dat');
reset(Paramfile); (open parameters file)
if I.Newparam = 1 then seek(Paramfile,filesize(Paramfile) -
1)
else seek(Paramfile,I.Paramselect); (read parameters

selected in pidsimm)
read(Paramfile,P);
close(Paramfile);
(write selections to screen)
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window(i.,1,80,25); clrscr; drawbox(3,2,80,8);
gotoxy (5,4); write( 'The parameters selectedl for this test
are-
gotoxy(7,5); write(P.Date);
gotoxy(5,6); write('A: ',P.a:2:6,' B: ',P.b:2:6,' C:
',P.c:2:6, ' D: ',P.d:2:6);
gotoxy(5,7); write('E: ',P.e:2:6,' F: ',P.f:2:6,' G:
',P.g:2:6, I H: ',P.h:2:6,' J: ',P.j:2:6); if I.Newparam

= 0 then
begin

drawbox (3 ,9, 80, 24) ;
gotoxy(5,l0); write('The upsets from the file
\thesis\data\' ,I.Filename,extension,' are - )
gotoxy(5, 12); write( 'Transducer: ');

case I.Transducer of
0: write('Venturi');
1: write('Pitot tube');
2: write( 'Hot wire anemometer');

end;
gotoxy(5,13); write(!Setpoint is: ',I.Setpoint:2:0,I
degrees'); gotoxy(5, 14); write( 'Steady state: ');
if I.Steadystate = 1 then write('yes') else write('no'-);
gotoxy(5,15); write('Datatype: ');

if I.Datatype = 1 then write('from file')
else write('from facility');
write(' Datapoints: ',I.Datapoints,'
Textfile: ');
if I.Textfile = 1 then write('yes') else
write('no');

gotoxy(5,16); write('PID alg: ');
case I.PID.alg of

0: write('open loop');
1: write ('interacting rectangular');
2: write ('non-interacting velocity');
3: write('constant');
4: write('step');
5: write('self tune');

end;
write(' Ki: ',I.PID.Ki:2:2,

IKp: ',I.PID.Kp:2:2,' Td:
,I. PID.Td:2 :2.)

gotoxy (5, 17); write( 'New parameters:')
if I.Newparam = 1 then write('yes') else
write('no');

gotoxy(5,18); write('Run upsets: ');
if I.Upsets.run = 1 then write('yes') else
write('no');-
write(' Valve upset:')
if I.Upsets.double = 1 then write('yes')
else write('no');

gotoxy (5,19); write( 'Damperon: ',I.Upsets. Damperon,
Damperoff: ',I.Upsets.Damperoff);
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gotoxy(5,20); write('Heaters on: ', I.Upsets.Heaterson,
I Heaters off: 1,I.Upsets.Heatersoff);

gotoxy(5,21); write('Cold wtr on: ',I.Upsets.Coldwateron,
I Cold wtr off:',I.Upset.Coldwateroff);

gotoxy(5,22); write('Setpoint up: ',I.Upsets.Setpointon,
Setpoint down: ',I.Upsets.Setpointoff,
I Size: ',I.Upsets.Setpointsize:2:2,'

degrees');
gotoxy(5,23); write('Wtr flowhigh:',I.Upsets.Wtrflowhigh,

I Wtr flowlow: ',I.Upsets.Wtrflowlow);
end;
gotoxy(5,25); write('Enter 0 if this is incorrect(l) -

(allow user to quit and correct inputs)
while keypressed do empty := readkey;
readln(Z); if Z <> '' then

begin
val(Z,Zval,code);
stop := Zval;

end
else stop := 1;

if stop = 0 then exit;
end; (first pass only)

equals(I.Upsets.Damperon,I.Upsets.Damperoff,equal,Upseton,Up
set off);
if equal = true then

begin
for M := Upseton to Upsetoff do
Data[M,6] := Data[M,6] - 297; (reduce air flow to simulate
closed damper)

end;

equals(I.Upsets.Heaterson,I.Upsets.Heatersoff,equal,
Upseton, Upsetoff);
if equal = true then
begin (fill inlet air temperature from file to simulate
heaters on and off)
assign(Upsetfile,'\thesis\data\Heaters.ups');
reset(Upsetfile);
for M := Upseton to Upseton + 101 do begin

read(Upsetfile,Datachange); (read the 101 values for
increasing inlet air temperature)
Data[M,l] := Data[M,l] + Datachange;

end;
for M := Upseton + 102 to Upsetoff - 99 do
Data[M,l] := Data [M,l] + 15; (add constant change between
increase and decrease inlet air temperature)
repeat

read(Upsetfile,Datachange); (read the 99 values for
decreasing inlet air temperature)
Data[M,l] := Data[M,l] + Datachange;
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until EOF(Upsetfile);
close (Upsetfile);

end;
equals (I .Upsets. Coidwateron, I .Upsets. Coidwateroff, equal,
Upseton,Upsetoff);
if equal =true then

begin
Upseton :=ROUND (I .Upsets. Coldwateron/5);
Upsetoff :=ROUND(I.Upsets.Coldwateroff/5);
assign (Upsetfile, '\thesis\data\Coldwtr.ups');
reset (Upsetfile);
for M := Upseton to Upseton + 100 do begin

read(Upsetfile,Datachange); (read the 100 values for
decreasing inlet water temperature)
Data[M,3] := Data[M,3] + Datachange;

end;
for M := Upseton + 101 to Upsetoff - 100 do
Data[M,3] := Data [M,3] - 22; (fill constant change in

inlet water temperature between decrease and increase)
repeat

read(Upsetfile,Datachange); (read the 100 values for
increasing inlet water temperature)
Data[M,3] := Data[M,3J + Datachange;
M := M + 1;

until EOF(Upsetfile);
close (Upsetfile);

end;
equals (I .Upsets .Setpointon, I .Upsets. Setpointoff, equal,
Upseton,Upsetoff);
if equal = true then (change setpoint)
I.Setpoint := I.Setpoint + I.Upsets.Setpointsize;
equals (I .Upsets. Setpointoff, I .Upsets. Setpointon, equal,
Upseton,Upsetoff);
if equal = true then
I.Setpoint := I.Setpoint - I.Upsets.Setpointsize;

end;

procedure Read -datafile;
var Readfile: file of real; (fill data array)

m: integer;
begin
write ('Reading from '+Filename);
assign (readfile, Filename);
reset(readfile);
K := 0;
while ((not EOF(readfile)) and (K<820))do
begin

read(readfile,Data[K,1J,Data[K,2J,Data(K,3),Data(K,4],
Data (K, 5) ,Data [K, 6] ,Data [K,7)) ;

if K > 0 then begin (check for and replace bad data)
if (Data(K,5) < 0.01) and (Data[K,2J < 20) then begin
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for m := 1 to 7 do Data[K,mJ := Data[K-1,m);
end;

end;
K := K + 1;
if (K/40 - INT(K/40) < 0.10) and (K/40 - INT(K/40) > -0.10)

then
write('.*');

end;
close (readf ile);
I.Datapoints := K - 1;
writein;

end;

procedure writedata (Write-to-screen: integer);
var Writefile: file of real;
begin

if Write-to-screen = 0 then begin
write('Writing to '+Filename);
assign (writef ile, Filename);
rewrite (writefile);
for K := 0 to I.Datapoints do
begin
write(writefile,Data(K,1],Data(K,2J,Data(K,3bData[K,4],

Data(K,5),Data[K,6],Data[K,7),Data(K,8),Data(K,9]);
if (K/40 - INT(K/40) < 0.10) and (K/40 - INT(K/40) >

-0.10) then
write('.*');

end;
end
else

writeln((K*5):2,' ',Data(K,l):2:2,' ',Data[K,2J:2:2,
I ,Data[K,3J :2:2,' ',Data(K,4) :2:2,

I 1,Data[K,5J :2:2,' ',Data(K,6] :2:2,
I 1,Data[K,7]*4096:2:0,1 1,Data[K,8) :2:2,
I ,Data[K,9J :2:2);

if Write -to -screen = 0 then close(writefile);
writeln;

end; (procedure write-file)

procedure Wtr-out-calculation(a,b,c,d: real);
var HdotA, MdotW, Wtr-avg: real;
begin
MdotA :=Data(K-l,6)*FPM_to_Kgps;
MdotW :=Data(K-l,5)*GPM_to_Kgps;
Wtr -avg := (Data[K-l,3] + Data[K-l,4)) /2;
Data[K,4] := Data[K-1,4J

+ (a * MdotW * (Data(K-1,3] -Data(K-1,4)))

+ (b * (Data(K-1,1] - Wtr-avg))
+ (c * MdotW * (Data[K-1,l) - Wtr-avg))
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+ (d * MdotA * (Data[K-1,l] - Wtr-avg));
end;

procedure Air out calculation(e,f,g,h,j: real);
var MdotA, MdotW, Wtr-avg: real;
begin

MdotA :=Data[K,6)*FPM toKgps;
MdotW :=Data[K,5]*GPto Kgps;
Wtr avg := (Data[K,3] + Data[K,4]) / 2;
Data[K+l,2] := Data[K,2]

" (e * MdotA * (Data[K,lJ - Data[K,2]))
" (f * (Wtr avg - Data(K,l3))
+ (g * MdotWR * (Wtr -avg - Data[K,ll))
" (h * MdotA * (Wtr avg - Data[K, 1]))
+ (j * (Data[K+l,1]-Data[K,l]));

end;

procedure make-Predictions;
begin

Filename := '\thesis\data\'+I.Filename+' .prd';
write ('Calculating');
for K := 2 to I.Datapoints do
begin

if I.Upsets.Run = 1 then upsets(Filename,J,stop);
if I.PID.alg <> 0 then PID;
Wtr -out calculation(P.a,P.b,P.c,P.d);
Air -out calculation(P.e,P.f,P.g,P.h,P.j);
if (K/40 - INT(K/40) < 0.10) and (K/40 - INT(K/40) > -0.10)

then
write('.')

end;
writeln;
writedata (0);

end;

begin (procedure Data-from-file)
J := 1; upsets(Filename,J,stop); J :=0;
if stop <> 0 then
begin

Sum error :=0;
Filename := \thesis\data\'+I.Filename+' .dat';
read datafile;
make-Predict ions;

end;
end;
End.
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"DRAW.TPU"

($R+) (Range checking off)
{$B+) (Boolean complete evaluation on)
($S+) (Stack checking on)
($I+) (I/O checking on)
($M 65500,16384,655360) (Turbo 3 default stack and heap)
( stack heapmin heapmax )

UNIT draw;

Interface
uses dos,crt,gdriver,gkernel;

procedure plotdata(Paramselect: integer; Filename: string);

type Data_array = array[0..820,1..7] of real; (maximum 800
datapoints:

1: Inlet air temperature
2: Outlet air temperature
3: Inlet water temperature
4: Outlet water temperature
5: Water flow
6: Air flow
7: Control signal)

type Parameters = record (model parameters)
date: string;
a: real; b: real; c: real; d: real; e: real;
f: real; g: real; h: real; j: real;

end;

type Information = record (miscelaneous data)
Filename: string;
Datatype: integer; (0: facility, 1: from file)
Datapoints: integer; (number of datapoints)
Textfile: integer; (write to text file ? 0: no, 1: yes)
Transducer: integer; (0: venturi, 1: pitot tube, 2: hot

wire anemometer)
PID: record (PID algorithm, Ki, Kp, Td)

alg:integer; Ki: real; Kp: real; Td: real; end;
(PID alg 0: open loop

1: interacting rectangular
2: non-interacting velocity
3: constant
4: step
5: self tune)

Newparam: integer; (calculate new model parameters ? 0:
no, 1: yes)

Setpoint: real;
Steadystate: integer; (find steady state before beginning
test? 0: no, 1: yes) 139
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Upsets: record
Run: integer; (run upsets ? 0: no, 1: yes)
Double: integer; (adjust water flow after upset)
Damperon: integer; (close damper)
Damperoff: integer; (open damper)
Heaterson: integer; (turn 15kw heaters on)
Heatersoff: integer; (turn 15kw heaters off)
Coldwateron: integer; (add cold water to system)
Coldwateroff: integer; (turn cold water off)
Setpointon: integer; (raise sestpoint)
Setpointoff: integer; (lower setpoint}
Setpointsize: real; (size of setpoint error)
Wtrflowhigh: integer; (in PID alg 4, increase water
flow)
Wtrflowlow: integer; (in PID alg 4, decrease water
flow)

end;
Paramselect: integer; (parameter set used in test)
Error model measured: real; (average error between measured
outlet air temperature and calculated outlet air

temperature)
Error setpointmeasured: real; (average error between
setpoint and measured outlet air temperature)
Errorsetpointmodel: real; (average error between setpoint
and calculated outlet air temperature)

end;

(global declarations)
var I: Information;

P: Parameters;
Infofile: file of Information;
Paramfile: file of Parameters;
Filename: string;
Maxtemp, Mintemp, Maxtime: real; (boudaries for graph)
K,Timelimit: integer;
Data: Dataarray;

Implementation

procedure findfile(filename: string; var fileexists: integer);
(uses "findfirst" and "findnext" to determine if file exists)
var K : integer;

fileinfo : searchrec;
lastfile : string;

begin
fileexists := 1; (set boolean to affirmative)
findfirst('\THESIS\DATA\*.*',anyfile,fileinfo);
if fileinfo.name <> filename then begin (if first file in
directory is not looked for file, continue)
repeat 140



findnext(fileinfo); (check each file for filename)
if lastfile = fileinfo.name then

fileexists := 0; (if file found set boolean to negative)
lastfile := fileinfo.name;

until (fileinfo.name = filename) or (fileexists = 0);
end;

end; (findfile)

procedure totext;
(rewrite data and predicted files declared real to files in
ASCII)
type Data_array = array[0..820,1..9] of real; (maximum 800
datapoints:

1: Inlet air temperature
2: Outlet air temperature
3: Inlet water temperature
4: Outlet water temperature
5: Water flow
6: Air flow
7: Control signal
8: prediction data
9: prediction data)

var readfile: file of real;
Writefile: text;
Z: integer;
Data: Dataarray;
Time: real;

begin
Filename := '\thesis\data\'+I.Filename+'.dat';
write('Reading from '+Filename);
assign(Readfile,Filename);
reset(Readfile); (open data file)
Z := 0;
repeat (fill data array from data file)
read(Readfile,Data[Z,l],Data(Z,2],Data[Z,3),Data[Z,4],
Data[Z,5),Data[Z,6],Data(Z,7]);
Z := Z + 1;
if (Z/40 - INT(Z/40) > -0.10) and (Z/40 - INT(Z/40) < 0.10)

then
write('.'); (write dots to screen)

until EOF(readfile);
close(readfile);
writeln;
I.Datapoints := Z - 1; (determine numberof datapoints acutally
in file)

Filename := '\thesis\data\'+I.Filename+'.dtx';
write('writing to '+Filename);
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assign (writefile, Filename);
rewrite(writefile); (open data text file)
(write parameters and information to data text file)
writein (writefile, 'Parameters used');
writeln(writefile,'A: ',P.a:2:6,' B: ',P.b:2:6,' C:

',P.c:2:6,
ID: ',P.d:2:61' E: ',P.e:2:6,' F: ',P.f:2:6,' G:

',P.g:2:6,
IH: ',P.h:2:6' - J: ' ,P.j:2:2);

writeln(writefile,'PID alg: ',I.PID.alg,' Ki: ',I.PID.Ki:2:2,'
Kp: ',I.PID.Kp:2:2,

ITd: ',I.PID.Td:2:2);
writeln(writefile, 'Setpoint: ',I.Setpoint:2:O);
writeln(writefile, 'Damper on: 1,I.Upsets.Damperon,

IDamper off: ',I.Upsets.Damperoff);
writeln(writefile, 'Heaters on: ',1 .Upsets.Heaterson,

IHeaters of f: ',I.Upsets.Heatersoff);
writeln(writefile, 'Cold water on: ',I.Upsets.Coldwateron,

ICold water of f: ',I.upsets.Coldwateroff);
writeln(writefile, 'Setpoint on: ',I.Upsets.Setpointon,

Setpoint of f: ',I.Upsets.Setpointoff,
Setpoint size: 1,I.Upsets.Setpointsize:2:O);

writeln(writetp~e,'Water flow set low at:
',I.Upsets.Wtrfl'owlow);
writeln(writefile, 'Water flow set high at:

',I.Upsets .Wtrflowhigh);
for Z :=0 to I.Datapoints do begin (write data to data text
file)
writeln(writefile,(Z*5):2,' ',Data(Z,lJ:2:2,'

',Data[Z,2]:2:2,' ',

Data(Z,3J :2:2,' 1,Data[Z,4) :2:2,' ',Data[Z,5) :2:2,' ',

Data[Z,6J:2:2,1 1,Data[Z,7):2:2);
if (Z/40 - INT(Z/40) > -0.10) and (Z/40 - INT(Z/40) < 0.10)

then
write('.');

end;
close (writefile);
writein;

Filename := '\thesis\data\'+I.Filename+' .prd';
write ('reading from '+Filename);
assign (readfile, Filename);
reset(readfile); (open predictions file)
Z := 0;
repeat (fill data array from predictions file)
read(readfile,Data[Z,1) ,Data[Z,2) ,Data(Z,3J ,Data[Z,4J,

Data[Z,5],Data(Z,6],Data[Z,7),Data[Z,8J,Data(Z,9]);
Z := Z + 1;
if (Z/40 - INT(Z/40) > -0.10) and (Z/40 - INT(Z/40) < 0.10)

then
write('.'); (draw dots to screen)
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until EOF(readfile);
close(readfile);
writein;
I.Datapoints := Z - 1; (determine number of datapoints actually
in file)

Filename := '\thesis\data\'+I.Filename+' .ptx';
write('writing to '+Filename);
assign (writef ile, Filename);
rewrite(writefile); (open predictions text file)
(write parameters, information, and average errors to

predictions text file)
writeln(writefile, 'Parameters used');
writeln(writefile,'A: ',P.a:2:6,' B: ',P.b:2:6,' C:

1,P~c2:6,1D: ',P.d:2:6,
IE: ',P.e:2:6,' F: ',P.f:2:6,' G: ',P.g:2:6,' H:

writeln(writefile,'PID alg: ',I.PID.alg,' Ki: ',I.PID.Ki:2:2,'
Kp: ',I.PID.Kp:2:2,

ITd: ',I.PID.Td:2:2);
writeln(writefile, 'Setpoint: ',I.Setpoint:2:O);
writeln(writefile, 'Damper on: ',I.Upsets.Damperon,

IDamper off: ',I.Upsets.Damperoff);
writeln(writefile, 'Heaters on: ',I.Upsets.Heaterson,

IHeaters off: ',I.Upsets.Heatersoff);
writeln(writefile, 'Cold water on: '11 .Upsets.Coldwateron,

ICold water off: ',I.upsets.Coldwateroff);
writeln(writefile, 'Setpoint on: ',I.Upsets.Setpointon,

Setpoint off: ',I.Upsets.Setpointoff,
Setpoint size: ',I.Upsets.Setpointsize:2:O);

writeln(writefile, 'Water flow set low at:
',I.Upsets.Wtrflowlow);
writeln(writefile,'Water flow set high at:

',1. Upsets. Wtrflowhigh);
writeln(writefile, 'Sum error model measured:

',I.Error-model-measured:.2:2);
writeln(writefile, 'Sum error setpoint measured:

',I. Error -setpoint -measured: 2:2);
writeln(writefile, 'Sum error setpoint model:

',I. Error setpoint-model :2:2);
for Z := 0 to I.Datapoints do begin (write data to predictions
text file, datapoints 0 and 1 only have 7 values)

if Z <= 1 then
writeln(writefile,(Z*5):2,' ',Data(Z,1J:2:2,'

',Data(Z,2]:2:2,'
Data[Z,3):2:2,' ',Data[Z,4]:2:2,' ',Data(Z,5J:2:2,' 1,
Data[Z,6):2:2,' ',Data[Z,7J:2:2(,'

',Data (Z, 81:2:2, Data [Z, 9]: 2:2))
else
writeln(writefile,(Z*5):2,' ',Data[Z,l):2:2,'

',Data(Z,2J:2:2,'
Data(Z,3J:2:2,' ',Data[Z,4):2:2,' ',Data[Z,5]:2:2,' ',
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Data[Z,6]:2:2,' ',Data[Z,7]:2:2,' ',Data[Z,8]:2:2,'
,Data[Z,9) :2:2) ;

if (Z/40 - INT(Z/40) > -0.10) and (Z/40 - INT(Z/40) < 0.10)
then

write('.*');
end;
close (writefile);
writein;

end; (totext)

procedure caic-error;
(read data from data and predictions files into arrays,
calculate average errors, and save data for plotting)

var Readfile, Readfile2, writefile, writefile2: file of real;
Infofile: file of Information;
Time,Air in,Wtr in,Wtr-Out,Wtr-flow,Air-flow,CS: real; (data
from data file)
Time2 ,Air -in2 ,Wtr -in2 ,Wtr -out2 ,Wtr flow2 ,Air-flow2,CS2:

real; (data from predictions file)
More: array[0..820,1..8) of real; (array for variables other
outlet air temperature in data and prediction files

X, write dot: real;
error-model-measured,error setpoint-measured,
error-setpoint-model: real; (see global type declarations

for detail)

begin
clrscr;
Filename := '\thesis\data\'+I. Filename+'.dat';
writeln('Reading from '+Filename+' &V);
assign(Readfile, Filename);
Filename := '\thesis\data\'+I. Filename+ .prd';
write('Reading from '+Filename);
assign(Readfile2,Filename);
reset(Readfile); (open data file)
reset(Readfile2); (open predictions file)
K := 0;
(Data[K,l] is outlet air temperature in data,
Data[K,2) is outlet air temperature in predictions)
(read first datapoint from data and predictions)
read(Readfile,More(K,1),Data[K,1),More[K,2],More(K,3J,

More [K, 4),More[K, 5),More[K, 6) (,More[K,7) ,More [K, 8) )
read(Readfile2,More[K,1),Data(K,2],More[K,2],More[K,3],

More [K, 4),More[K, 5),More [K, 6),More[K, 7] ,More [K, 8));
if Data[0,l) >= Data[0,2) then Max -temp := Data[0,l)
else Max-temp := Data[0,2); (initialize max temp)
if Data[0,l) <= Data[0,2] then Min _temp := Data[0,l)
else Mm _temp := Data[0,2J; (initialize min _temp)
I.Error-model-measured := 0; (initialize errors)
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I.Error -setpoint -measured :- 0;
I.Error setpoint model := 0;
repeat (fill data and more arrays)
K := K + 1;
read(Readfile,More[K,lJ,Data[K,l),More(K,2],More[K,3],

More [K, 4),More [K, 5),More[K, 6] (,More[K, 7] ,More[K, 8]) )
read(Readfile2,More[K,l) ,Data[K,2) ,More[K,2) ,More[K,3),

More [K, 4),More [K, 5),More [K, 6),More[K, 7] ,More[K, 8)
if Data[K,1) > Max -temp then Max-temp :=Data[K,l);
if Data[K,2] > Max temp then Max temp :=Data[K,2J;
if Data[K,l) < Min temp then Min7_temp :=Data[K,l);
if Data[K,2) < Min _temp then Min _temp :=Data[K,2];
Error --model-measured := ABS(Data[R,1) - Data[K,2]);
Error -setpoint -measured : = ABS (Data [K, 1) - I. Setpoint);
Error -setpoint model := ABS(Data[K,2] - I.Setpoint);
I.Error-model -measured :=

I.Error-model-measured + Error-model-measured;
I.Error-setpoint --measured :=

I.Error-setpoint-measured + Error-setpoint-measured;
I.Error_setpoint-model :=

I.Error setpoint model + Error setpoint model;
if (K/40 - INT(k/40) > -0.10) and (K/40-- INT(K/40) < 0.10)
then write('.'); (write dots to screen)

until EOF(Readfile);
close(readfile);
close(readfile2);
I.Datapoints := K; (determine datapoints in file)
(finalize average errors)
I.Error model-measured := I.Error-model-measured/I.Datapoints;
I.Error-setpoint measured :=
I .Error setpoint measured/I .Datapoints;
I.Error-setpoiit model := I.Error-setpoint-model/I.Datapoints;
writein;
(finalize borders for graph)
Max-time :=(K * 5) + 5;
Max-temp :=Max-temp + 1;
Min _temp :=Mintemp - 1;
Time-limit := ROUND((Max-time - 5) / 5);
(write parameters, information and average errors to screen)
writeln('A: ',P.a:2:6,' B: ',P.b:2:6,' C: ',P.c:2:6,' D:

',P.d:2:61 ' E: ',P.e:2:6,' F: ',P.f:2:6,' G:
,P.g:2:6, ' H: ' ,P.h:2:6);

writeln('PID alg: ',I.PID.alg,' Ki: ',I.PID.Ki:2:211 Kp:
* ,I.PID.Kp:2:21
ITd: ',I.PID.Td:2:2);

writeln('Setpoint*: ',I.Setpoint:2:0);
writeln( 'Damper on: ',I.Upsets.Damperon,

I Damper of f: ',I.Upsets.Damperoff);
writeln ('Heaters on: 'I .Upsets .Heaterson,

I Heaters off: ',I.Upsets.Heatersoff);
writein ('Cold water on: ',I .Upsets. Coidwateron,

Cold water off: ',I.upsets.Coldwateroff);
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writeln( 'Setpoint on: ',I.Upsets.Setpointon,
Setpoint off: ',I.Upsets.Setpointoff,
Setpoint size: 1,I.Upsets.Setpointsize:2:0);

writeln('Water flow set low at: ',I.Upsets.Wtrflowlow);
writeln('Water flow set high at: ',I.Upsets.Wtrflowhigh);
writeln(IMax time: ',Max time:2:0,1 Max temp: ',Max-temp:2:2,

I Min temp: ',Min -temp:2:2);
writeln(ISum error model measured:

',I.Error-model-measured:2:2);
writeln('Sum error setpoint measured:

,I.Error -setpoint -measured:2:2);
writeln(ISum error setpoint model:

',I.Error-setpoint -model:2:2);
assign(infofile,'\thesis\data\'+I.Filename+' .in2');
rewrite(infofile); (open information file)
write(infofile,I); (write average errors to information file)
close(infofile);

end; (calc error)

procedure plot -data;
(draw graph and plot outlet air temperature in data and
predictions)
var X: real;

K: integer;
S,amount -str: string;
Sa,Sb,Sc,Sd,Se,sf,Sg,Sh: string; (values converted to

strings)

begin
initgraphic;

defineworld(l, 0,Max temp,Max time,Mintemp);
definewindow(l,6,0,79,150); (window 1 is graph)
selectworld(l);
selectwindow(l);
drawline(0,Min -temp,Max time,Min-temp); (draw axis)
drawline (0,0,0 ,Max-temp);

defineworld(2,0, l0,Max time,O);
definewindow(2,6,150,79,160); (window 2 is X axis)
sele *ctworld(2);
selectwindow(2);
X := Max time / 5;
for K := 1 to 5 do begin (write tick marks and axis numbers)
drawline(X * K17,X * K110);
str(K*X:2:0,S);
drawtextw((X*K)-Max-time/25,5,l,S);

end;

defineworld(3, 0,Max 'temp,1l0,Min temp);
definewindow(3,0,0,5,150); (windlow 3 is Y axis)
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selectworld(3);
selectwindow(3);
X := (Max temp - Min temp) / 5;
for K := 1 to 5 do begin (write tick marks and axis numbers)
drawline(9,(X*K) + Min _temp,11,(X*K) + Mm _temp);
str( (X*K)+Min temp:2:0,S);
drawtextw(5, (X*K)+Min-temp-0.1,l,S);

end;

defineworid (4 ,0, 0,100,29) ;
definewindow(4,6,160,79,189); (window 4 is information)
selectworld(4);
selectwindow(4);
drawborder;
(write upsets, average errors, files and parameters used)
str(I.Setpoint:4:0,Sa);
drawtextw(1,2,l, 'Setpoint: '+Sa);
str(I.Upsets.Damperon:4,Sa); str (I.Upsets.Damperoff:4,Sb);
drawtextw(l,8,l,'Damper on: '+Sa+' Damper off: '+Sb);
str(I.Upsets.Heaterson: 4,Sa); str (I.Upsets.Heatersoff: 4,Sb);
drawtextw(1,15,l,'Heaters on: '+Sa+' Heaters of f: '+Sb);
str(I.Upsets.Coldwateron:4 ,Sa); str

(I .Upsets. Coidwateroff: 4, Sb);
drawtextw(40,15,1,'Cold water on: '+Sa+' Cold water off:

str(I.Upsets.Setpointon:4,Sa); str (I.Upsets.Setpointoff:4,Sb);
str(I.Upsets.Setpointsize:4:0,Sc);
drawtextw(25,2,l,'Setpoint on: '+Sa+' Setpoint off: I+Sb+

ISetpoint size: '+Sc);
str(I.Upsets.Wtrflowlow:5,Sa); str(I.Upsets.Wtrflowhigh:5,Sb);
drawtextw(40,8,l,'Water flow set low at: '+Sa+

IWater flow set high at: '+Sb);
str(I.error-model-measured:5:2,Sa);
str(I.error -setpoint measured: 5:2 ,Sb);
str(I.error -setpoint~model: 5:2 ,Sc);
drawtextw(1,23,l, 'Err model meas: '+Sa+

Err spt meas: '+Sb+
Err spt model: '+Sc);

drawtextw(67,23,l,'File: '+I.Filename+' Param: '+P.Date);

selectworld(l);
selectwindow(l);
(draw lines, and labels for upsets)
if I.Upsets.Damperon > 0 then

drawline (I. Upsets. Damperon,Min temp+l, I. Upsets. Damperon,Max-temp-
1); if I.Upsets.Damperoff > 0then

drawline(I.Upsets. Damperoff,Min -temp+1, I.Upsets. Damperoff,Max-ten
p-1); if I.Upsets.Heaterson > 0 then
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drawline (I .Upsets .Heaterson,Min 'temp+l, I.Upsets .Heaterson, Max-ten
p-i); if I.Upsets.Heatersoff > 0 then

drawline (I. Upsets. Heatersoff,Min -temp+l, I.Upsets .Heatersoff,Max-t
emp-l); if I .Upsets. Coidwateron > 0 then

drawlime (I .Upsets. Coldwateron,Mi M temp+l, I .Upsets. Coidwateron, Max
temp-i); if I.Upsets.Coldwateroff > 0 then

drawlime (I .Upsets. CoidwateroffM'Mm temp+l, I .Upsets. Coidwateroff, M
ax temp-i); if I.Upsets.Setpointon > 0 then

drawline (I .Upsets. Setpointon, Mm temp+l, I .Upsets. Setpointon, Max-t
emp-i); if I.Upsets.Setpointoff > 0 then

drawline(I.Upsets. Setpointoff,Min -temp+l, I.Upsets.Setpointoff,Max
_temp-i); if I.PID.alg = 4 then
begin if I.Upsets.Wtrflowlow > 0 then

drawline(I.Upsets.Wtrflowlow,Min-temp+l, I.Upsets.Wtrflowlow,Max-t
emp-l); if I.Upsets.Wtrflowhigh > 0 then

drawlime (I .Upsets. Wtrf lowhigh, Mm temp+l, I .Upsets. Wtrflowhigh, Max
_temp-i);
end;
Time limit := ROUND((Max time - 5) / 5);
for K := 1 to Time -limit-do begin
drawline((K*5) - 5,Data(K-1,iJ, (K*5) ,Data(K,lJ); {draw line

for measured outlet air temperature)
(drawline((K*5) - 5,Data(K-1,27J,(K*5),Data[K,2));)
drawtextw(K*5,Data[K,2J,2,chr(27)+'l'); (draw + for predicted
outlet air temperature)

end;
savescreen( '\thesis\data\'+I.Filename+' .scr');

end; (plot-data)

procedure Plotdata;
'main program)
vir Infofilename: string;

fileexists: integer; (boolean for findfile)
extension: string; (extension for filename)
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Begin
window(1,1,80,25); (use whole screen)
clrscr;
(find which information file exists,
*.1N2: predicted data exits
*.INl: predicted data does not exist
*.INF: data taken before August, 1989)

findfile(filename+' .1N2' ,fileexists);
if fileexists = 1 then begin
assign(Infofile, '\thesis\data\'+Filename+' .in2');
extension := '.1N21;

end
else begin

findfile(fileiame+' .INi' ,fileekists);
if fileexists = 1 then begin
assign (infofile, '\thesis\data\' +filename+'.inl');
extension := '.INi';

end
else begin

assign(infofile, '\thesis\data\'+filename+' .inf');
extension := '.INF';

end;
end;
reset(Infofile); (open information file)
read(Infofile, I);
close(Infofile);
Filename := '\thesis\data\Paramf.dat';
writeln('reading from '+Filename);
assign (Paramf ile, Filename);
reset(Paramfile); (open parameter file)
seek(Paramfile, Paramselect);
read (Paramfile, P);
close(Paramfile);
if I.Datatype = 1 then Calc -error;
if I.Textfile = 1 then Totext;
Plot-data;

end; {plotdata)

End.
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"PICTURES .TPU"1

UNIT pictures;

interf ace
uses dos,crt;
procedure drawbox (Lefto,,, htBottom: integer);

implementation

procedure drawbox;
var J: integer;

X: integer;
begin

textcolor(random(6) + 1); (random colors)
gotoxy (Left, Top);
case mem[ $B800 : 160*(Top-1) + 2*(Left-1) ] of (check for
corners use correct character to keep corner)

O..178,218 : write(chr(218));
179,180,192,195 : write(chr(195));
191,194,196 : write(chr(194));
193,197,217 : write(chr(197));

end;
for J := Left + 1 to Right - 1 do begin

if (memf $B800 : 160*(Top-1) + 2*(J-1) 3=196)
or (mem( $B800 : 160*(Top-1) + 2*(J-1) 3< 179)

then write (chr(196))
else write(chr(mem( $B800 : 160*(Top-l) + 2*(J-1) 3)

end;
case mem( $B800 : 160*(Top-1) + 2*(Right-1) ] of

0..178,191 : write(chr(191));
179,180,217 : write(chr(180));
192,193,195,197 : write(chr(197));
194,196,218 : write(chr(194));

end;
for J := Top + 1 to Bottom - 1 do begin
gotoxy(Left,J);
if (mem( $B800 : 160*(J-1) + 2*(Left-1) ] <= 179)
then write(chr(179))

else write(chr(mem[ $B800 : 160*(J-1) + 2*(Left-1) 3)
gotoxy(Right,J);
if (mem[ $B800 : 160*(J-1) + 2*(Right-1) 3<= 179)
then write(chr(179))

else write(chr(mem( $B800 : 160*(J-1) + 2*(Left-1) 3)
end;
gotoxy (Left, Bottom);
case mem[ $B800 : 160*(Bottom-1) + 2*(Left-1) ] of

0..178,192 : write(chr(192));
179,195,218 : write(chr(195));
180,191,194,197 : write(chr(197));
193,196,217 : write(chr(193));
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end;
for J := Left + 1 to Right - 1 do begin

if (memE $B800 : 160*(Bottom-1) + 2*(J-1) 3=196)
or (mem[ $B800 : 160*(Bottom-1) + 2*(J-1) 3< 179)

then write(chr(196))
else write(chr(mem[ $B800 : 160*(Bottom-1) + 2*(J-l) 3)

end;
case mem[ $B800 : 160*(Bottom-l) + 2*(Right-1) 3of

O..178,217 : write(chr(217));
179,180,191 : write(chr(180));
192,193,196 : write(chr(193));
194,195,197,218 : write(chr(197));

end;
end;

End.
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"PSSPSELF.PAS"

{$R+) (Range checking off)
($B+) (Boolean complete evaluation on)
($S+) (Stack checking on)
($1+) (I/O checking on)
($M 65500,16384,655360) (Turbo 3 default stack and heap)
( stack heapmin heapmax )

program Pssp(input,output); (11-28-89)

Uses Dos, Crt, gdriver, gkernel, Pictures;

type Parameters = record
date: string;
a: real; b: real; c: real; d: real;
e: real; f: real; g: real; h: real; j: real;

end;

arr3x3 = array[l..3,1..3] of real;
Dataarray = array[0..200,1..7] of real;

Const
GPMtoKgps = 0.06296382;
FPMtokgps = 0.001221041;

var K, iterations, stop, Datapoints, bias, Time-limit: integer;

P: Parameters;
over-shoot : arr3x3;
kos : array(l..10,1..3] of real;
Data : Dataarray;
Kosfile, writefile : text;
Filename: string;
Sa,Sb,Sc,Sd,Se,Sf,Sg,Sh: string;
Kpstart, Kpend, Kpstep, setpointbase, setpointstep: real;
MdotWmiddle, Deltawater, Kp, Setpoint : real;
Maxtemp, Mintemp, Maxtime: real;
PercOS, Watflow, K_step, Sum-error: real;
Kc, Kr, Ks, CO, CO_1, MdotWplus, MdotWminus: real;
xl, x2, setpointplus, setpointminus, Twssbase, Taossbase,
Twssminus, Taossminus, templ, temp2, Kv, setpointupper

real;

function XtoY(X,Y:real):real;
var Z: real;
begin

if X = 0 then XtoY := 0
else begin

Z := Y * ln(X); 152



XtoY := exp(Z);
end;

end;

procedure PID;

procedure calcypid;

var aot -count real, aot count-real old, PID-caic: real;
aot count:- integer;-
Mdotwbar :real;
Mwcount :byte;

begin
pid -calc := Kp*(Data[K,2] - Setpoint);
aot count real := pid calc;
aot~count := round(aot count-real); (declared in this

procedure )
CO_1 := CO;
Co := aot -count; (uses PID calculation, not CO of

actual test)
end;
begin
calcpid;
Data[K,5) := 3 + (Kv/0.06296382)*(CO 1 - 1164);
if Data[K,5] < 0.0 then Data(K,5] :=0.0;
if Data[K,5] > 5.37 then Data[K,5] :=5.37;

end; (procedure PID)

procedure Set-data;
var

mn: integer;
begin

for m := 0 to 200 do
begin

Data~m,lJ : 30; Data(in,2) : 50; Data~m,3J : 74;
Data~m,4J := 56;

Data~m,5) : 3; Data~in,6) : 700; (base case)
if (mn/40 - INT(in/40) < 0.10) and (mn/40 - INT(in/40) > -0.10)

then
write('.')

end;
writeln;

end;

procedure Wtr-out-calculation(a,b,c,d: real);
var MdotA, MdotW, Wtr-avg: real;
begin

MdotA :=Data[K-l,6]*FPM-to_Kgps;
MdotW :=Data[K-1,5)*GPM_to_Kgps;
Wtr -avg := (Data(K-l,3] + Data[K-1,4J) / 2;
Data(K,4] := Data[K-1,4J
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" (a * MdotW * (Data(K-1,3] - Data[K-1,4l))
" (b * (Data[K-1,1] - Wtr-avg))
" (c * MdotW * (Data[K-l,1] - Wtr -avg))
" (d * MdotA * (Data[K-1,1J - wtr-avg));

end;

procedure Air-out-calculation~e, f,g,h, j: real);
var MdotA, MdotW, Wtr avg : real;
begin
MdotA :=Data[K,6]*FPM to Kgps;
MdotW :=Data[K,5]*GPkto-Kgps
Wtr avg := (Data[K,3] T Data[K,4]) / 2;
Data[K+l,2] := Data[K,2]

" (e * MdotA * (Data[K,1J - Data[K,2l))
" (f * (Wtr avg - Data[K,lf)
" (g * MdotW * (Wtr avg - Data[K,1]))
" (h * MdotA * (Wtr avg - Data[K,1])))
+ (j * (Data(K+1,l]-Data[K,lJ));
gotoxy (1, 25) ;
textcolor(Random(6) + 1);
write('Tao pred 1 ,Data[K+l,2]:2:2);

end;

procedure makepredictions;

begin
window(1, 1, 80, 25) ;
write ('Calculating');
K := 2;
datapoints :=200;
Data[0,7] :=setpointbase;
Data[1,7) :=setpointbase;
data[2,7] :=setpointbase;
repeat

If K <= 75 then setpoint :=setpointbase;
If (K > 75) and (K <= 150) then setpoint :=setpointplus-

setpointstep;
If K > 150 then setpoint := setpointbase;
Data[K,7] := setpoint;
PID;
Wtr -out calculation(P.a,P.b,P.c,P.d);
Air-out calculation(P.e,P.f,P.g,P.h,P.j);
K := K +1;

Until K =datapoints -1;
writein;

end;

procedure Datafromfile;

begin (procedure Data -from -file)
writeln('Kp = ',Kp:2*:2);
MdotWplus := (MdotWmiddle + Delta-water) *0.06296382;
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MdotWminus := (MdotWmiddle - Delta water) *0.06296382;
Set data;
x1 := ((P.b +

(P.c*MdotWplus)+(P.d*data[l,6J*0.001221041) )*(data~l,l]-
(0.5*data(l,3])) + (P.a*MdotWplus*data(l,3]))/

((P.a*MdotWplus) + (0.5*(P.b + (P.c*MdotWplus) +
(P.d*data[l, 6] *0.001221041))));
tempi :=(data(1,3)+xl)/2;
temp2 :=tempi - data[1,1];
x2 := data[1,1] +

((P.f/(P.e*data[1,6]*0.001221041))*temp2) +
(((P.g*MdotWplus)/(P.e*data[1,6]*0.001221041))*temp2) +
((P.h/P.e)*temp2);

Twssbase := tempi; Taossbase := x2;
setpointplus := x2 - (((((MdotWplus/0.0629) - 3)/-0.00702)+

1164 -bias)/Kp);

x1 : ((P.b +
(P.c*HdotWminus)+(P.d*data(1,6J*O.001221041) )*(data(1,1J -

(0.5*data[1,3])) + (P.a*MdotWminus*data(l,3J))/
((P.a*MdotWminus) + (0.5*(P.b + (P.c*MdotWminus) +

(P.d*data[1,6]*0.001221041))));
tempi :=(data[l,3)+xl)/2;
temp2 :=tempi - data[1,lJ;
x2 := data[l,1) +

((P.f/(P.e*data(1,6)*0.001221041))*temp2) +
(((P.g*MdotWminus)/(P.e*datal,6]*0.001221041))*temp2) +
((P.h/P.e) *temp2);

Twssminus := x1; Taossminus := x2;
setpointminus :=x2 -(((((MdotWplus/0.0629) - 3)/-0.00702)+

1164 - bias)/Kp);
setpointbase :=setpointplus;
setpointstep :=setpointplus - setpointminus;
writein ( spbase ',setpointbase :2:2,' spstep

i,setpointstep:2:2);
writeln('Twbar = WTwssbase:2:2,u I,'Taobar=

',Taossbase:2:2);
Delay(1000);
makejpredictions;

end; (procedure Data-from-file)

procedure caic-error(var stop: integer);

var
Time,Air -in,wtr-in,Wtr-out,Wtr-flow,Air-flow,CS: real;
Time2, Air in2 ,Wtr-in2 ,Wtr out2 ,Wtr flow2 ,Air-flow2, CS2:

real;
X, write-dot: real;
Max-tempposl, Min-tempposl, Max temppos2, Min-temppos2:

real;
PercOs : real;
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clrscr;
K := 0;
Max-tempyposl :=0;
Mintempyposl :=100;
if Data[0,1] >= Data[0,2] then Max temp :=Data[0,l]
else Max Itemp := Data[0,2);
if Data[0,1] <= Data[0,2] then Min _temp :=DataEO,l]
else Mintemp := Data[O,2];
repeat
K := K + 1;
if Data(K,2] > Max-temp then Max-temp :=Data[K,2);
if (Data[K,2] > Max tempposl) and (K >=75) then

Max-tempposl := Data(K,2J;
if Data(K,2] < Min _temp then Mm _temp := Data(K,2);
if (Data[K,2] < Mintempyposl) and (K>=75) then Mintempposl

:Data[K,2];
if (K/40 - INT(K/40) > -0.10) and (K/40 - INT(K/40) < 0.10)

then
write(' .');

until K = 150;
writeln;
writeln('Min = ',Min tempps:2)
writeln('Max = ',Max-tempjpos1:2:2);
writeln('final = ',Data[K,2]:2:2);
If abs(Data~k,2]-Max-tempposl) > 0.001 then
PercOS := 100*(Min temp~yosl -

Data[K,2] )/(Data[K,2)-Data[75,2])
else PercOs := 0;

if (PercOS > 24) and (PercOS < 26) then stop :=1;
writeln(Percos);
str(PercOS:5:2,Sa);
if (PercOS > 24.5) and (PercOS < 25.5) then stop := 1;
append(KOSfile);
write (KOSfile, PercOS: 12:2);
close(KOSfile);
over shoot[1,1) : over shoot[2,1);
over-shoot[2,1) : Percos;
over 'shoot(3,1) : over shoot(2,1) - over-shoot(1,l);
Max-tempjpos2 :=Data[1590,2J;

Min-tempypos2 :=Data[150,2J;

repeat
K := K + 1;
if Data[K,2] > Max temp then Max-temp := Data[K,2);
if Data[K,2] > Max tempypos2 then Max-temp pos2 := Data(K,2J;

if Data(K,2] < Min temp then Min temp := Data(K,2];
if Data[K,2J < Min-temppos2 then -Min-temppos2 := Data[K,2J;

if (K/40 - INT(K/40) > -0.10) and (K/40 - INT(K/40) < 0.10)
then

write'.');156



until K=198;
writein;
writeln('Min = ',Min-temppos2:2:2);
writeln('Max = ',Max temppos2:2:2);
writeln('final =, ata(K,2]:2:2);
If (Data[K,2] -Min-temppos2) > 0.001 then
PercOS := l00*(Max-temppos2 -

Data[K,2])/(Data[K,2]-Data[150,2)
else PercOS := 0;
writeln (Percos);
if (PercOS > 24) and (PercOS < 26) then stop :=1;
str(PercOS:5:2,Sb);
append (KoSfile);
over -shoot[l,2] :=over-shoot[2,2);
over -shoot[2,2] :=Percos;
over-shoot[3,2] :=over-shoot(2,2] - over-shoot[l,2);

writeln(KOSfile,PercQS:12:2,over-Shoot(3,1]:8:2,over-shoot[3,2):8
:2);
close(KOSfile);
writeln;
Max time :=(K * 5) + 5;
Max7 temp :=Max -temp + 1;
Min temp :=Mm temp - 1;
Time limit := ROUND((Max time - 5) / 5);
Watflow := Data(75,3J;
If (over shoot[2,l) > 25) and (over Shoot[3,1] > 0) then

over-jshoot[l,3] := - over -shoot[l,3)/2;
If (0 < over-shoot(3,1)) and (over-shoot[3,l) <20) then

over shoot[l,3] := 2*over-shoot[1,3];
If stop = 1 then begin write(char(7)); delay(2000); end;

end; (procedure caic error)

procedure plot-data;
var X: real;

K: integer;
S,amount-str: string;

begin
initgraphic;
defineworld (1,0,Max temp,Max time,Min-temp);
definewindow(, 6, 0,79, 150) ;
selectworld(l);
selectwindow(l);
drawlime (0,Mmn _temp1 Max time, Min-temp);
drawline(0, 0,O,Max temp);
defineworld(2,0,l0,Max tineO);
definewindow(2, 6,150,7'9,16^0);
selectworld(2);
selectwindow(2);
X := Max time / 5;
for K:= 1to 5do 157



begin
drawline(X * K,7,X * K,10);
str(K*X:2:0,S);
drawtextw( (X*K) -Max-time/25,5,1,S);

end;
defineworld(3,0,Max Itemp,1 0,Min-temp);
definewindow(3, 0, 0,5,150) ;
selectworld(3);
selectwindow(3);
X := (Max temp - Min _temp) / 5;
for K Y= to 5 do
begin

drawline(9,(X*K) + Min -temp,11,(X*K) +Mintemp);
str((X*K)+Min -temp:2:0,S);
drawtextw(5, (X*K)+Min-temp-0.1,1,S);

end;
defineworld(4,0,0,100,29);
definewindow(4,6, 160,79,189);
selectworld(4);
selectwindow(4);
drawborder;
drawtextw(1, 23,1, 'Percent OS down '+Sa+

IPercent OS up: '+Sb);
str(Watflow:2:2,Sc);
drawtextw(1,10,1, 'Water flow: '+Sc);
str(Kp:2:2,Sc);
drawtextw(30,10,1, 'Kp: '+Sc);
selectworld(1);
selectwindow(1);
drawline(375,Min temp+l, 375,Max temp-i);
drawline(750,Mintemp+l,750,Max-temp-1);
Time limit := ROUND((Max time --5) / 5);
for K := 1 to Time-limit do
begin

drawline((K*5) - 5,Data[K-1,3J*10,(K*5),Data[K,3J*10);
drawtextw(K*5,Data[K,2),2,chr(27)+'1');

end;
end;

procedure Plotdata;
var Infofilename: string;

fileexists: integer;
extension: string;

Begin
stop := 0;
window(l, 1, 80, 25) ;
clrscr;
assign (KOSfile, '\thesis\data\KOS.dat');
append (KOSfile);
write(KOSfile,Kp:8:2);
close(KoSfile); 158



Caic error(stop);
Plot~data;
delay(500);
if stop <> 1 then leavegraphic;

end;

Begin (main program)
Pa := 0.498213; P.b :=0.019103; P.c :=0.064465; P.d :

0.022166;
P.e := 0.152283; P.f :=0.022538; P.g :=0.078853; P.h :

0.045770;
P.j := 0.210209; (from fit of 8-15c11)
(writein ('setpoint upper?');
readln(setpointupper);)
Ky := -0.000442;
writeln('bias');
readin (bias);
clrscr;
gotoxy(3,6); write('Kp start = '); readln(Kpstart);
gotoxy(3,7); write('Kp end = );readln(Kpend);
gotoxy(3,8); write('Kp step = ';readln(Kpstep);
{gotoxy(3,9); write(IMw step (gpm) = '); readln(Delta-water);)

Delta water := 0.05;
gotoxy(45,6); write('MdotW middle (GPM)=

readin (MdotWmiddle);
stop := 0;
iterations := 0;
Kp := Kpstart;
assign(KOSfile, '\thesis\data\KOS.dat');
rewrite(KOSfile);
writeln(KQSfile,'Kp':8,'% OS down':12,'% OS up':12,'Water flow
:13 ,MdotWmiddle: 6:2);
close(KOSfile);
fillchar(over-shoot,sizeof (over -shoot), 0);
fillchar(Data,sizeof (data) ,0);
While (Kp <= Kpend) and (stop =0) do begin

randomize;
textcolor(random(6) + 1);
gotoxy(3,6); write('Kp start 1 ,Kpstart:2:2);
gotoxy(3,7); write('Kp end = ,Kpend:2:2);
gotoxy(3,8); write('Kp step = ,Kpstep:2:2);
gotoxy(45,6); write('Waterflow = ',MdotWmiddle:2:2,' ');
over -shoot[l,3J := Kpstep;
Datafromfile;
plotdata;
Kpstep := over shoot[l,33;
Kp := Kp + Kpstep;
Delay(l000);

end; (while)
leavegraphic;
clrscr;
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Kp := Kp - Kpstep;
writeln('Kp = 1,Kp:2:2);
writeln('SPb = ',setpointbase:2:2);
writeln('%OS down =',over-shoot(2,1):2:2);
writeln('%OS up = ,over 'shoot[2,2]:2:2);
writeln( 'del SP = ',setpointbase-setpointminus: 2:2);
(Filename := '\thesis\data\simexl.dtx';
assign (writef ile, filename);
rewrite (writefile);
writeln(writefile,Kp:2:2,' ',over shoot(2,l]:2:2,1

',over shoot(2,2]:2:2);
For K := 0 to datapoints do writeln(writefile,K*5/60:2:2,'

',Data[K,2) :2:2,' ',Data[K,71 :2:2) ;
close (writefile);)

End.
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"READMAT. PAS"

program Readmat;
($N+)
var matrixfile : file;

mattype, matrows, matcols,
matimag,matnamelength : longint;
matname : byte;
matrix : array(l..10,l..500] of double;

I,JIK : integer;
matrixtext : text;

begin
assign (matrixf ile, '\thesis\data\3gpmrl.mat'); (file root locus

saved in)
reset (matrixf ile, 1);
for K := 1 to 1 do begin
blockread(matrixfile,mattype, 4); writeln(mattype: 5);
blockread(matrixfile,matrows,4); writeln(matrows: 5);
blockread(matrixfile,matcols,4); writeln(matcols: 5);
blockread(matrixfile,matimag, 4); writeln(matimag: 5);
blockread (matrixf ile, matnamelength, 4);
for I := 0 to matnamelength - 1 do begin
blockread(matrixfile,matname, 1);
write(chr(matname));

end;
writein;
for I := 1 to matcols do begin

for J := 1 to matrows do begin
blockread(matrixfile,matrix[I,J , 8);
write (matrix(I,J) :10:4);

end;
end;
writein;
if matimag = 1 then begin

for I := matcols + 1 to matcols * 2 do begin
for J := 1 to matrows do begin
blockread(matrixfile,matrix(I,J , 8);
write (matrix[I,J) :10:4);

end;
end;
writein;

end;
end;
close (matrixfile);
assign (matrixtext, '\thesis\data\3gpm. sy'); (ascii file)
rewrite (matrixtext);
for J := 1 to matrows do begin

write(matrix(1,J]:10:4);
if matrix[4,J) > 0 then write(' +') else

if matrix[4,J] = 0 then write(' ')else
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write(' -');
if matrix[4,J] = 0 then write(11:7) else
write(ABS(matrix[4,J]) :7:4);

if matrix[4,J] = 0 then write(' ') else
write('i');

write (matrix[2,J] :10:4);
if matrix[5,J] > 0 then write(' +1) else

if matrix[5,J] = 0 then write(' ')else
write(' -');

if matrix[5,J] = 0 then write('':7) else
write(ABS(matrix[5,JJ) :7:4);

if matrix[5,J] = 0 then write(' ') else
write('i');

write (matrix(3,J] :10:4);
if matrix[6,J] > 0 then write(' +') else

if matrix[6,JJ = 0 then write(' ')else
write(' -');

if matrix[6,J] = 0 then write('':7) else
write(ABS(matrix[6,JJ) :7:4);

if matrix[6,J] =0 then writeln(' ') else
writeln (I iI)

writeln(matrixtext,matrix(l,JJ :9:4,matrix(4,J] :9:4,matrix[2,J) :9:
4,

matrix[5,JJ :9:4,matrix(3,JJ :9:4,matrix[6,J] :9:4)
end;
close (matrixtext);

end.
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"IDSTEST.M"

% An M-file to plot caculate closed loop trnasfer funcion
% and plot step response for the FRR3 model
clear
stopit = 0
mw=0 .5
kp=input ('Kp to start with')
while (stopit -= 1)

clear Icos y os
j=1
os(1) =0
delos=1O
incr--input( 'increment value')
while abs(os(j)-25)>0.5

!erase \matlab. 313\under\param.tmp
fprintf( '\matlab.313\under\param.tmp', '%9.3g %9.3g' ,kp,mw)

I test3
load \matlab. 313\under\f gfrr3 .mat
y=dstep(num,den, 100)
ymax=max Cy)
ymin=min (y)
os(j+l) = l00*(ymax-y(99) )/(y(99)-ymin)
kos (j +1,1) =kp
]cos (j +1, 2) =os (j +1)
if (os(j+1)>25) & (incr>0), incr=-incr/2, end
if (j>3),delos=os(j+1)-os(j), end
if ((delos<5) & (os(j+1)<20) & (j>3)), incr=2*incr, end
if ((delos<0) & (incr<0) & (os(j+1)<24)),incr=-incr/2, end

if abs(incr)<0.O0l, incr=2*incr, end
pause (1)
plot(y, )
pause( 1)
]p=kp+incr
j=j+1

end
!beep
mw
kos
stopit=input(Ido another 0 stop 1I'
mw=mw+O. 5
end

end
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